Merge branch 'master' of https://github.com/cmu-phil/Spectral
This commit is contained in:
commit
454401fdea
2 changed files with 36 additions and 25 deletions
|
@ -32,17 +32,37 @@ definition diff_im_in_ker {B : AbGroup} (d : B →g B) (H : is_differential d) :
|
|||
definition homology {B : AbGroup} (d : B →g B) (H : is_differential d) : AbGroup :=
|
||||
@quotient_ab_group (ab_kernel d) (image_subgroup_of_diff d H)
|
||||
|
||||
definition homology_ugly {B : AbGroup} (d : B →g B) (H : is_differential d) : AbGroup :=
|
||||
(quotient_ab_group (image_subgroup (ab_subgroup_of_subgroup_incl (diff_im_in_ker d H))))
|
||||
|
||||
definition homology_iso_ugly {B : AbGroup} (d : B →g B) (H : is_differential d) : (homology d H) ≃g (homology_ugly d H) :=
|
||||
begin
|
||||
-- fapply quotientgroupiso ...
|
||||
exact sorry
|
||||
end
|
||||
|
||||
definition SES_iso_C {A B C C' : AbGroup} (ses : SES A B C) (k : C ≃g C') : SES A B C' :=
|
||||
begin
|
||||
fapply SES.mk,
|
||||
exact SES.f ses,
|
||||
exact k ∘g SES.g ses,
|
||||
exact SES.Hf ses,
|
||||
fapply @is_surjective_compose _ _ _ k (SES.g ses),
|
||||
exact is_surjective_of_is_equiv k,
|
||||
exact SES.Hg ses,
|
||||
fapply is_exact.mk,
|
||||
repeat exact sorry
|
||||
end
|
||||
|
||||
definition SES_of_differential_ugly {B : AbGroup} (d : B →g B) (H : is_differential d) : SES (ab_image d) (ab_kernel d) (homology_ugly d H) :=
|
||||
begin
|
||||
exact SES_of_inclusion (ab_subgroup_of_subgroup_incl (diff_im_in_ker d H)) (is_embedding_ab_subgroup_of_subgroup_incl (diff_im_in_ker d H)),
|
||||
end
|
||||
|
||||
definition SES_of_differential {B : AbGroup} (d : B →g B) (H : is_differential d) : SES (ab_image d) (ab_kernel d) (homology d H) :=
|
||||
begin
|
||||
fapply SES.mk,
|
||||
exact @ab_subgroup_of_subgroup_incl B (image_subgroup d) (kernel_subgroup d) (diff_im_in_ker d H),
|
||||
exact ab_qg_map (image_subgroup_of_diff d H),
|
||||
rexact is_embedding_ab_subgroup_of_subgroup_incl (diff_im_in_ker d H),
|
||||
exact is_surjective_ab_qg_map (image_subgroup_of_diff d H),
|
||||
fapply is_exact.mk,
|
||||
intro b, induction b,
|
||||
sorry,
|
||||
end
|
||||
exact SES_of_inclusion (ab_subgroup_of_subgroup_incl (diff_im_in_ker d H)) (is_embedding_ab_subgroup_of_subgroup_incl (diff_im_in_ker d H)),
|
||||
end
|
||||
|
||||
structure exact_couple (A B : AbGroup) : Type :=
|
||||
( i : A →g A) (j : A →g B) (k : B →g A)
|
||||
|
|
|
@ -284,24 +284,15 @@ namespace group
|
|||
exact H
|
||||
end
|
||||
|
||||
definition ab_image {G : AbGroup} {H : Group} (f : G →g H) : AbGroup :=
|
||||
AbGroup_of_Group (image f)
|
||||
begin
|
||||
intro g h,
|
||||
induction g with x t, induction h with y s,
|
||||
fapply subtype_eq,
|
||||
induction t with p, induction s with q, induction p with g p, induction q with h q, induction p, induction q,
|
||||
refine (((respect_mul f g h)⁻¹ ⬝ _) ⬝ (respect_mul f h g)),
|
||||
apply (ap f),
|
||||
induction G, induction struct, apply mul_comm
|
||||
end
|
||||
definition ab_image {G : AbGroup} {H : AbGroup} (f : G →g H) : AbGroup :=
|
||||
ab_subgroup (image_subgroup f)
|
||||
|
||||
definition image_incl {G H : Group} (f : G →g H) : image f →g H :=
|
||||
definition image_incl {G H : Group} (f : G →g H) : image f →g H :=
|
||||
incl_of_subgroup (image_subgroup f)
|
||||
|
||||
definition ab_image_incl {A B : AbGroup} (f : A →g B) : ab_image f →g B := incl_of_subgroup (image_subgroup f)
|
||||
definition ab_image_incl {A B : AbGroup} (f : A →g B) : ab_image f →g B := incl_of_subgroup (image_subgroup f)
|
||||
|
||||
definition is_equiv_surjection_ab_image_incl {A B : AbGroup} (f : A →g B) (H : is_surjective f) : is_equiv (ab_image_incl f ) :=
|
||||
definition is_equiv_surjection_ab_image_incl {A B : AbGroup} (f : A →g B) (H : is_surjective f) : is_equiv (ab_image_incl f ) :=
|
||||
begin
|
||||
fapply is_equiv.adjointify (ab_image_incl f),
|
||||
intro b,
|
||||
|
@ -315,14 +306,14 @@ namespace group
|
|||
reflexivity
|
||||
end
|
||||
|
||||
definition iso_surjection_ab_image_incl [constructor] {A B : AbGroup} (f : A →g B) (H : is_surjective f) : ab_image f ≃g B :=
|
||||
definition iso_surjection_ab_image_incl [constructor] {A B : AbGroup} (f : A →g B) (H : is_surjective f) : ab_image f ≃g B :=
|
||||
begin
|
||||
fapply isomorphism.mk,
|
||||
exact (ab_image_incl f),
|
||||
exact is_equiv_surjection_ab_image_incl f H
|
||||
end
|
||||
|
||||
definition hom_lift [constructor] {G H : Group} (f : G →g H) (K : subgroup_rel H) (Hyp : Π (g : G), K (f g)) : G →g subgroup K :=
|
||||
definition hom_lift [constructor] {G H : Group} (f : G →g H) (K : subgroup_rel H) (Hyp : Π (g : G), K (f g)) : G →g subgroup K :=
|
||||
begin
|
||||
fapply homomorphism.mk,
|
||||
intro g,
|
||||
|
|
Loading…
Reference in a new issue