trying to show that quotient groups of logically equivalent subgroups are isomorphic
This commit is contained in:
parent
987f9f41ed
commit
44d32281fb
1 changed files with 27 additions and 2 deletions
|
@ -6,9 +6,9 @@ Authors: Floris van Doorn, Egbert Rijke
|
|||
Constructions with groups
|
||||
-/
|
||||
|
||||
import hit.set_quotient .subgroup ..move_to_lib
|
||||
import hit.set_quotient .subgroup ..move_to_lib types.equiv
|
||||
|
||||
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod trunc function equiv
|
||||
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod trunc function equiv is_equiv
|
||||
|
||||
namespace group
|
||||
|
||||
|
@ -269,6 +269,31 @@ namespace group
|
|||
exact H
|
||||
end
|
||||
|
||||
definition quotient_group_functor_contr {K L : subgroup_rel A} (H : Π (a : A), K a → L a) :
|
||||
is_contr ((Σ(g : quotient_ab_group K →g quotient_ab_group L), g ∘g ab_qg_map K ~ ab_qg_map L) ) :=
|
||||
begin
|
||||
fapply ab_qg_universal_property,
|
||||
intro a p,
|
||||
fapply qg_map_eq_one,
|
||||
exact H a p,
|
||||
end
|
||||
|
||||
definition quotient_group_iso {K L : subgroup_rel A} (H1 : Π (a : A), K a → L a) (H2 : Π (a : A), L a → K a) :
|
||||
is_contr (Σ gh : (Σ (g : quotient_ab_group K →g quotient_ab_group L), g ∘g ab_qg_map K ~ ab_qg_map L),
|
||||
is_equiv (group_fun (pr1 gh))) :=
|
||||
begin
|
||||
fapply is_trunc_sigma,
|
||||
exact quotient_group_functor_contr H1,
|
||||
intro a, induction a with g h,
|
||||
fapply is_contr_of_inhabited_prop,
|
||||
fapply adjointify,
|
||||
rexact group_fun (pr1 (center' (@quotient_group_functor_contr A L K H2))),
|
||||
have KK : is_contr ((Σ(g' : quotient_ab_group K →g quotient_ab_group K), g' ∘g ab_qg_map K ~ ab_qg_map K) ), from
|
||||
quotient_group_functor_contr (λ a, (H2 a) ∘ (H1 a)),
|
||||
-- have KK_path : ⟨g, h⟩ = ⟨id, λ a, refl (ab_qg_map K a)⟩, from eq_of_is_contr ⟨g, h⟩ ⟨id, λ a, refl (ab_qg_map K a)⟩,
|
||||
repeat exact sorry
|
||||
end
|
||||
|
||||
definition quotient_group_functor [constructor] (φ : G →g G') (h : Πg, N g → N' (φ g)) :
|
||||
quotient_group N →g quotient_group N' :=
|
||||
begin
|
||||
|
|
Loading…
Reference in a new issue