trying to show that quotient groups of logically equivalent subgroups are isomorphic

This commit is contained in:
Egbert Rijke 2017-04-27 18:07:58 -04:00
parent 987f9f41ed
commit 44d32281fb

View file

@ -6,9 +6,9 @@ Authors: Floris van Doorn, Egbert Rijke
Constructions with groups
-/
import hit.set_quotient .subgroup ..move_to_lib
import hit.set_quotient .subgroup ..move_to_lib types.equiv
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod trunc function equiv
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod trunc function equiv is_equiv
namespace group
@ -269,6 +269,31 @@ namespace group
exact H
end
definition quotient_group_functor_contr {K L : subgroup_rel A} (H : Π (a : A), K a → L a) :
is_contr ((Σ(g : quotient_ab_group K →g quotient_ab_group L), g ∘g ab_qg_map K ~ ab_qg_map L) ) :=
begin
fapply ab_qg_universal_property,
intro a p,
fapply qg_map_eq_one,
exact H a p,
end
definition quotient_group_iso {K L : subgroup_rel A} (H1 : Π (a : A), K a → L a) (H2 : Π (a : A), L a → K a) :
is_contr (Σ gh : (Σ (g : quotient_ab_group K →g quotient_ab_group L), g ∘g ab_qg_map K ~ ab_qg_map L),
is_equiv (group_fun (pr1 gh))) :=
begin
fapply is_trunc_sigma,
exact quotient_group_functor_contr H1,
intro a, induction a with g h,
fapply is_contr_of_inhabited_prop,
fapply adjointify,
rexact group_fun (pr1 (center' (@quotient_group_functor_contr A L K H2))),
have KK : is_contr ((Σ(g' : quotient_ab_group K →g quotient_ab_group K), g' ∘g ab_qg_map K ~ ab_qg_map K) ), from
quotient_group_functor_contr (λ a, (H2 a) ∘ (H1 a)),
-- have KK_path : ⟨g, h⟩ = ⟨id, λ a, refl (ab_qg_map K a)⟩, from eq_of_is_contr ⟨g, h⟩ ⟨id, λ a, refl (ab_qg_map K a)⟩,
repeat exact sorry
end
definition quotient_group_functor [constructor] (φ : G →g G') (h : Πg, N g → N' (φ g)) :
quotient_group N →g quotient_group N' :=
begin