feat(homotopy/spectrum): fibers of spectra

This commit is contained in:
Mike Shulman 2016-03-23 11:30:39 -07:00
parent 104378f2c3
commit 5379c2e253

View file

@ -88,6 +88,47 @@ namespace pointed
definition equiv_ppcompose_left {A B C : Type*} (g : B ≃* C) : ppmap A B ≃* ppmap A C :=
pequiv_of_pmap (ppcompose_left g) _
definition pfiber_loop_space {A B : Type*} (f : A →* B) : pfiber (Ω→ f) ≃* Ω (pfiber f) :=
pequiv_of_equiv
(calc pfiber (Ω→ f) ≃ Σ(p : Point A = Point A), ap1 f p = rfl : (fiber.sigma_char (ap1 f) (Point Ω B))
... ≃ Σ(p : Point A = Point A), (respect_pt f) = ap f p ⬝ (respect_pt f) : (sigma_equiv_sigma_right (λp,
calc (ap1 f p = rfl) ≃ !respect_pt⁻¹ ⬝ (ap f p ⬝ !respect_pt) = rfl : equiv_eq_closed_left _ (con.assoc _ _ _)
... ≃ ap f p ⬝ (respect_pt f) = (respect_pt f) : eq_equiv_inv_con_eq_idp
... ≃ (respect_pt f) = ap f p ⬝ (respect_pt f) : eq_equiv_eq_symm))
... ≃ fiber.mk (Point A) (respect_pt f) = fiber.mk pt (respect_pt f) : fiber_eq_equiv
... ≃ Ω (pfiber f) : erfl)
(begin cases f with f p, cases A with A a, cases B with B b, esimp at p, esimp at f, induction p, reflexivity end)
definition pfiber_equiv_of_phomotopy {A B : Type*} {f g : A →* B} (h : f ~* g) : pfiber f ≃* pfiber g :=
begin
fapply pequiv_of_equiv,
{ refine (fiber.sigma_char f pt ⬝e _ ⬝e (fiber.sigma_char g pt)⁻¹ᵉ),
apply sigma_equiv_sigma_right, intros a,
apply equiv_eq_closed_left, apply (to_homotopy h) },
{ refine (fiber_eq rfl _),
change (h pt)⁻¹ ⬝ respect_pt f = idp ⬝ respect_pt g,
rewrite idp_con, apply inv_con_eq_of_eq_con, symmetry, exact (to_homotopy_pt h) }
end
definition transport_fiber_equiv {A B : Type} (f : A → B) {b1 b2 : B} (p : b1 = b2) : fiber f b1 ≃ fiber f b2 :=
calc fiber f b1 ≃ Σa, f a = b1 : fiber.sigma_char
... ≃ Σa, f a = b2 : sigma_equiv_sigma_right (λa, equiv_eq_closed_right (f a) p)
... ≃ fiber f b2 : fiber.sigma_char
definition pequiv_postcompose {A B B' : Type*} (f : A →* B) (g : B ≃* B') : pfiber (g ∘* f) ≃* pfiber f :=
begin
fapply pequiv_of_equiv, esimp,
refine ((transport_fiber_equiv (g ∘* f) (respect_pt g)⁻¹) ⬝e (@fiber.equiv_postcompose A B f (Point B) B' g _)),
-- change (eq_equiv_fn_eq g _ _)⁻¹ ((ap g (respect_pt f) ⬝ respect_pt g) ⬝ (respect_pt g)⁻¹) = respect_pt f,
exact sorry
end
definition pfiber_equiv_of_square {A B C D : Type*} {f : A →* B} {g : C →* D} {h : A ≃* C} {k : B ≃* D} (s : k ∘* f ~* g ∘* h)
: pfiber f ≃* pfiber g :=
calc pfiber f ≃* pfiber (k ∘* f) : /- fiber.equiv_postcompose; need a pointed version (WIP above) -/ sorry
... ≃* pfiber (g ∘* h) : pfiber_equiv_of_phomotopy s
... ≃* pfiber g : /- fiber.equiv_precompose -/ sorry
end pointed
open pointed
@ -134,6 +175,10 @@ namespace spectrum
attribute smap.to_fun [coercion]
definition sglue_square {E F : spectrum} (f : E →ₛ F) (n : )
: equiv_glue F n ∘* f n ~* Ω→ (f (succ n)) ∘* equiv_glue E n
:= glue_square f n
definition scompose {X Y Z : prespectrum} (g : Y →ₛ Z) (f : X →ₛ Y) : X →ₛ Z :=
smap.mk (λn, g n ∘* f n)
(λn, calc glue Z n ∘* to_fun g n ∘* to_fun f n
@ -195,9 +240,15 @@ namespace spectrum
spectrum.MK (λn, ppmap A (B n))
(λn, (loop_pmap_commute A (B (succ n)))⁻¹ᵉ* ∘*ᵉ (equiv_ppcompose_left (equiv_glue B n)))
/- Mapping spectra -/
/-----------------------------------------
Fibers and long exact sequences
-----------------------------------------/
/- Fibers and long exact sequences -/
definition sfiber (E F : spectrum) (f : E →ₛ F) : spectrum :=
spectrum.MK (λn, pfiber (f n))
(λn, pfiber_loop_space (f (succ n)) ∘*ᵉ pfiber_equiv_of_square (sglue_square f n))
/- Mapping spectra -/
/- Spectrification -/