index spectra by a general succ_str, +Z, or +N, as appropriate
This commit is contained in:
parent
5379c2e253
commit
559777e45c
1 changed files with 124 additions and 61 deletions
|
@ -5,7 +5,7 @@ Authors: Michael Shulman
|
|||
|
||||
-/
|
||||
|
||||
import types.int types.pointed2 types.trunc homotopy.susp algebra.homotopy_group
|
||||
import types.int types.pointed2 types.trunc homotopy.susp algebra.homotopy_group .chain_complex
|
||||
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index
|
||||
|
||||
/-----------------------------------------
|
||||
|
@ -136,99 +136,160 @@ open pointed
|
|||
Basic definitions
|
||||
---------------------/
|
||||
|
||||
structure prespectrum :=
|
||||
(deloop : ℕ → Type*)
|
||||
(glue : Πn, (deloop n) →* (Ω (deloop (succ n))))
|
||||
open succ_str
|
||||
|
||||
attribute prespectrum.deloop [coercion]
|
||||
/- The basic definitions of spectra and prespectra make sense for any successor-structure. -/
|
||||
|
||||
structure is_spectrum [class] (E : prespectrum) :=
|
||||
(is_equiv_glue : Πn, is_equiv (prespectrum.glue E n))
|
||||
structure gen_prespectrum (N : succ_str) :=
|
||||
(deloop : N → Type*)
|
||||
(glue : Π(n:N), (deloop n) →* (Ω (deloop (S n))))
|
||||
|
||||
attribute gen_prespectrum.deloop [coercion]
|
||||
|
||||
structure is_spectrum [class] {N : succ_str} (E : gen_prespectrum N) :=
|
||||
(is_equiv_glue : Πn, is_equiv (gen_prespectrum.glue E n))
|
||||
|
||||
attribute is_spectrum.is_equiv_glue [instance]
|
||||
|
||||
definition equiv_glue (E : prespectrum) [H : is_spectrum E] (n:ℕ) : (E n) ≃* (Ω (E (succ n))) :=
|
||||
pequiv_of_pmap (prespectrum.glue E n) _
|
||||
|
||||
structure spectrum :=
|
||||
(to_prespectrum : prespectrum)
|
||||
structure gen_spectrum (N : succ_str) :=
|
||||
(to_prespectrum : gen_prespectrum N)
|
||||
(to_is_spectrum : is_spectrum to_prespectrum)
|
||||
|
||||
attribute spectrum.to_prespectrum [coercion]
|
||||
attribute spectrum.to_is_spectrum [instance]
|
||||
attribute gen_spectrum.to_prespectrum [coercion]
|
||||
attribute gen_spectrum.to_is_spectrum [instance]
|
||||
|
||||
-- Classically, spectra and prespectra use the successor structure +ℕ.
|
||||
-- But we will use +ℤ instead, to reduce case analysis later on.
|
||||
|
||||
abbreviation spectrum := gen_spectrum +ℤ
|
||||
abbreviation spectrum.mk := @gen_spectrum.mk +ℤ
|
||||
|
||||
namespace spectrum
|
||||
|
||||
abbreviation glue := prespectrum.glue
|
||||
definition glue {{N : succ_str}} := @gen_prespectrum.glue N
|
||||
--definition glue := (@gen_prespectrum.glue +ℤ)
|
||||
definition equiv_glue {N : succ_str} (E : gen_prespectrum N) [H : is_spectrum E] (n:N) : (E n) ≃* (Ω (E (S n))) :=
|
||||
pequiv_of_pmap (glue E n) (is_spectrum.is_equiv_glue E n)
|
||||
|
||||
-- An easy way to define a spectrum.
|
||||
definition MK (deloop : ℕ → Type*) (glue : Πn, (deloop n) ≃* (Ω (deloop (succ n)))) : spectrum :=
|
||||
spectrum.mk (prespectrum.mk deloop (λn, glue n)) (is_spectrum.mk (λn, _))
|
||||
-- Sometimes an ℕ-indexed version does arise naturally, however, so
|
||||
-- we give a standard way to extend an ℕ-indexed (pre)spectrum to a
|
||||
-- ℤ-indexed one.
|
||||
|
||||
/- Spectrum maps -/
|
||||
structure smap (E F : prespectrum) :=
|
||||
(to_fun : Πn, E n →* F n)
|
||||
(glue_square : Πn, glue F n ∘* to_fun n ~* Ω→ (to_fun (succ n)) ∘* glue E n)
|
||||
definition psp_of_nat_indexed [constructor] (E : gen_prespectrum +ℕ) : gen_prespectrum +ℤ :=
|
||||
gen_prespectrum.mk
|
||||
(λ(n:ℤ), match n with
|
||||
| of_nat k := E k
|
||||
| neg_succ_of_nat k := Ω[succ k] (E 0)
|
||||
end)
|
||||
begin
|
||||
intros n, cases n with n n: esimp,
|
||||
{ exact (gen_prespectrum.glue E n) },
|
||||
cases n with n,
|
||||
{ exact (pid _) },
|
||||
{ exact (pid _) }
|
||||
end
|
||||
|
||||
definition is_spectrum_of_nat_indexed [instance] (E : gen_prespectrum +ℕ) [H : is_spectrum E] : is_spectrum (psp_of_nat_indexed E) :=
|
||||
begin
|
||||
apply is_spectrum.mk, intros n, cases n with n n: esimp,
|
||||
{ apply is_spectrum.is_equiv_glue },
|
||||
cases n with n: apply is_equiv_id
|
||||
end
|
||||
|
||||
protected definition of_nat_indexed (E : gen_prespectrum +ℕ) [H : is_spectrum E] : spectrum
|
||||
:= spectrum.mk (psp_of_nat_indexed E) (is_spectrum_of_nat_indexed E)
|
||||
|
||||
-- In fact, a (pre)spectrum indexed on any pointed successor structure
|
||||
-- gives rise to one indexed on +ℕ, so in this sense +ℤ is a
|
||||
-- "universal" successor structure for indexing spectra.
|
||||
|
||||
definition succ_str.of_nat {N : succ_str} (z : N) : ℕ → N
|
||||
| succ_str.of_nat zero := z
|
||||
| succ_str.of_nat (succ k) := S (succ_str.of_nat k)
|
||||
|
||||
definition psp_of_gen_indexed [constructor] {N : succ_str} (z : N) (E : gen_prespectrum N) : gen_prespectrum +ℤ :=
|
||||
psp_of_nat_indexed (gen_prespectrum.mk (λn, E (succ_str.of_nat z n)) (λn, gen_prespectrum.glue E (succ_str.of_nat z n)))
|
||||
|
||||
definition is_spectrum_of_gen_indexed [instance] {N : succ_str} (z : N) (E : gen_prespectrum N) [H : is_spectrum E]
|
||||
: is_spectrum (psp_of_gen_indexed z E) :=
|
||||
begin
|
||||
apply is_spectrum_of_nat_indexed, apply is_spectrum.mk, intros n, esimp, apply is_spectrum.is_equiv_glue
|
||||
end
|
||||
|
||||
protected definition of_gen_indexed [constructor] {N : succ_str} (z : N) (E : gen_spectrum N) : spectrum :=
|
||||
spectrum.mk (psp_of_gen_indexed z E) (is_spectrum_of_gen_indexed z E)
|
||||
|
||||
-- Generally it's easiest to define a spectrum by giving 'equiv's
|
||||
-- directly. This works for any indexing succ_str.
|
||||
protected definition MK {N : succ_str} (deloop : N → Type*) (glue : Π(n:N), (deloop n) ≃* (Ω (deloop (S n)))) : gen_spectrum N :=
|
||||
gen_spectrum.mk (gen_prespectrum.mk deloop (λ(n:N), glue n))
|
||||
(begin
|
||||
apply is_spectrum.mk, intros n, esimp,
|
||||
apply pequiv.to_is_equiv -- Why doesn't typeclass inference find this?
|
||||
end)
|
||||
|
||||
-- Finally, we combine them and give a way to produce a (ℤ-)spectrum from a ℕ-indexed family of 'equiv's.
|
||||
protected definition Mk (deloop : ℕ → Type*) (glue : Π(n:ℕ), (deloop n) ≃* (Ω (deloop (nat.succ n)))) : spectrum :=
|
||||
spectrum.of_nat_indexed (spectrum.MK deloop glue)
|
||||
|
||||
-- (Pre)spectrum maps. These make sense for any succ_str.
|
||||
structure smap {N : succ_str} (E F : gen_prespectrum N) :=
|
||||
(to_fun : Π(n:N), E n →* F n)
|
||||
(glue_square : Π(n:N), glue F n ∘* to_fun n ~* Ω→ (to_fun (S n)) ∘* glue E n)
|
||||
|
||||
open smap
|
||||
infix ` →ₛ `:30 := smap
|
||||
|
||||
attribute smap.to_fun [coercion]
|
||||
|
||||
definition sglue_square {E F : spectrum} (f : E →ₛ F) (n : ℕ)
|
||||
: equiv_glue F n ∘* f n ~* Ω→ (f (succ n)) ∘* equiv_glue E n
|
||||
:= glue_square f n
|
||||
-- A version of 'glue_square' in the spectrum case that uses 'equiv_glue'
|
||||
definition sglue_square {N : succ_str} {E F : gen_spectrum N} (f : E →ₛ F) (n : N)
|
||||
: equiv_glue F n ∘* f n ~* Ω→ (f (S n)) ∘* equiv_glue E n
|
||||
-- I guess this is necessary because structures lack definitional eta?
|
||||
:= phomotopy.mk (glue_square f n) (to_homotopy_pt (glue_square f n))
|
||||
|
||||
definition scompose {X Y Z : prespectrum} (g : Y →ₛ Z) (f : X →ₛ Y) : X →ₛ Z :=
|
||||
definition scompose {N : succ_str} {X Y Z : gen_prespectrum N} (g : Y →ₛ Z) (f : X →ₛ Y) : X →ₛ Z :=
|
||||
smap.mk (λn, g n ∘* f n)
|
||||
(λn, calc glue Z n ∘* to_fun g n ∘* to_fun f n
|
||||
~* (glue Z n ∘* to_fun g n) ∘* to_fun f n : passoc
|
||||
... ~* (Ω→(to_fun g (succ n)) ∘* glue Y n) ∘* to_fun f n : pwhisker_right (to_fun f n) (glue_square g n)
|
||||
... ~* Ω→(to_fun g (succ n)) ∘* (glue Y n ∘* to_fun f n) : passoc
|
||||
... ~* Ω→(to_fun g (succ n)) ∘* (Ω→ (f (succ n)) ∘* glue X n) : pwhisker_left Ω→(to_fun g (succ n)) (glue_square f n)
|
||||
... ~* (Ω→(to_fun g (succ n)) ∘* Ω→(f (succ n))) ∘* glue X n : passoc
|
||||
... ~* Ω→(to_fun g (succ n) ∘* to_fun f (succ n)) ∘* glue X n : pwhisker_right (glue X n) (ap1_compose _ _))
|
||||
... ~* (Ω→(to_fun g (S n)) ∘* glue Y n) ∘* to_fun f n : pwhisker_right (to_fun f n) (glue_square g n)
|
||||
... ~* Ω→(to_fun g (S n)) ∘* (glue Y n ∘* to_fun f n) : passoc
|
||||
... ~* Ω→(to_fun g (S n)) ∘* (Ω→ (f (S n)) ∘* glue X n) : pwhisker_left Ω→(to_fun g (S n)) (glue_square f n)
|
||||
... ~* (Ω→(to_fun g (S n)) ∘* Ω→(f (S n))) ∘* glue X n : passoc
|
||||
... ~* Ω→(to_fun g (S n) ∘* to_fun f (S n)) ∘* glue X n : pwhisker_right (glue X n) (ap1_compose _ _))
|
||||
|
||||
infixr ` ∘ₛ `:60 := scompose
|
||||
|
||||
/- Suspension prespectra -/
|
||||
|
||||
definition psp_suspn : ℕ → Type* → Type*
|
||||
| psp_suspn 0 X := X
|
||||
| psp_suspn (succ n) X := psusp (psp_suspn n X)
|
||||
-- This should probably go in 'susp'
|
||||
definition psuspn : ℕ → Type* → Type*
|
||||
| psuspn 0 X := X
|
||||
| psuspn (succ n) X := psusp (psuspn n X)
|
||||
|
||||
definition psp_susp_oo (X : Type*) :=
|
||||
prespectrum.mk (λn, psp_suspn n X) (λn, loop_susp_unit (psp_suspn n X))
|
||||
-- Suspension prespectra are one that's naturally indexed on the natural numbers
|
||||
definition psp_susp (X : Type*) : gen_prespectrum +ℕ :=
|
||||
gen_prespectrum.mk (λn, psuspn n X) (λn, loop_susp_unit (psuspn n X))
|
||||
|
||||
/- Truncations -/
|
||||
|
||||
-- We could truncate prespectra too, but since the operation
|
||||
-- preserves spectra and isn't "correct" acting on prespectra
|
||||
-- without spectrifying them first anyway, why bother?
|
||||
definition strunc (k : ℕ₋₂) (E : spectrum) : spectrum :=
|
||||
spectrum.MK (λ(n:ℕ), ptrunc (k + n) (E n))
|
||||
(λ(n:ℕ), (loop_ptrunc_pequiv (k + n) (E (succ n)))⁻¹ᵉ* ∘*ᵉ (ptrunc_pequiv_ptrunc (k + n) (equiv_glue E n)))
|
||||
spectrum.Mk (λ(n:ℕ), ptrunc (k + n) (E n))
|
||||
(λ(n:ℕ), (loop_ptrunc_pequiv (k + n) (E (succ n)))⁻¹ᵉ*
|
||||
∘*ᵉ (ptrunc_pequiv_ptrunc (k + n) (equiv_glue E (int.of_nat n))))
|
||||
|
||||
/---------------------
|
||||
Homotopy groups
|
||||
---------------------/
|
||||
|
||||
/- A spectrum has homotopy groups indexed by all integers. The naive
|
||||
definition would be
|
||||
|
||||
match n with
|
||||
| neg_succ_of_nat k := π[0] (E (1+k))
|
||||
| of_nat k := π[k] (E 0)
|
||||
end
|
||||
|
||||
but in order to ensure easily that they are all abelian groups, we
|
||||
start shifting out earlier. Since homotopy groups commute
|
||||
appropriately with loop spaces, this is equivalent.
|
||||
-/
|
||||
definition shomotopy_group [constructor] (n : ℤ) (E : spectrum) : CommGroup :=
|
||||
match n with
|
||||
| neg_succ_of_nat k := πag[0+2] (E (3 + k))
|
||||
| of_nat 0 := πag[0+2] (E 2)
|
||||
| of_nat 1 := πag[0+2] (E 1)
|
||||
| of_nat (succ (succ k)) := πag[k+2] (E 0)
|
||||
end
|
||||
-- Here we start to reap the rewards of using ℤ-indexing: we can
|
||||
-- read off the homotopy groups without any tedious case-analysis of
|
||||
-- n. We increment by 2 in order to ensure that they are all
|
||||
-- automatically abelian groups.
|
||||
definition shomotopy_group [constructor] (n : ℤ) (E : spectrum) : CommGroup := πag[0+2] (E (2 + n))
|
||||
|
||||
notation `πₛ[`:95 n:0 `] `:0 E:95 := shomotopy_group n E
|
||||
|
||||
|
@ -236,17 +297,19 @@ namespace spectrum
|
|||
Cotensor of spectra by types
|
||||
-------------------------------/
|
||||
|
||||
definition sp_cotensor (A : Type*) (B : spectrum) : spectrum :=
|
||||
-- Makes sense for any indexing succ_str. Could be done for
|
||||
-- prespectra too, but as with truncation, why bother?
|
||||
definition sp_cotensor {N : succ_str} (A : Type*) (B : gen_spectrum N) : gen_spectrum N :=
|
||||
spectrum.MK (λn, ppmap A (B n))
|
||||
(λn, (loop_pmap_commute A (B (succ n)))⁻¹ᵉ* ∘*ᵉ (equiv_ppcompose_left (equiv_glue B n)))
|
||||
(λn, (loop_pmap_commute A (B (S n)))⁻¹ᵉ* ∘*ᵉ (equiv_ppcompose_left (equiv_glue B n)))
|
||||
|
||||
/-----------------------------------------
|
||||
Fibers and long exact sequences
|
||||
-----------------------------------------/
|
||||
|
||||
definition sfiber (E F : spectrum) (f : E →ₛ F) : spectrum :=
|
||||
definition sfiber {N : succ_str} (E F : gen_spectrum N) (f : E →ₛ F) : gen_spectrum N :=
|
||||
spectrum.MK (λn, pfiber (f n))
|
||||
(λn, pfiber_loop_space (f (succ n)) ∘*ᵉ pfiber_equiv_of_square (sglue_square f n))
|
||||
(λn, pfiber_loop_space (f (S n)) ∘*ᵉ pfiber_equiv_of_square (sglue_square f n))
|
||||
|
||||
/- Mapping spectra -/
|
||||
|
||||
|
|
Loading…
Reference in a new issue