WIP first group isomorphism them
This commit is contained in:
parent
9df0b25ae5
commit
6be1b46d5e
1 changed files with 48 additions and 0 deletions
|
@ -254,6 +254,54 @@ definition comm_group_first_iso_thm (A B : CommGroup) (f : A →g B) : quotient_
|
|||
-- show that the above map is injective and surjective.
|
||||
end
|
||||
|
||||
definition comm_group_kernel_factor {A B C: CommGroup} (f : A →g B)(g : A →g C){i : C →g B}(H : f = i ∘g g )
|
||||
: Π a:A , kernel_subgroup(g)(a) → kernel_subgroup(f)(a) :=
|
||||
begin
|
||||
intro a,
|
||||
intro p,
|
||||
exact calc
|
||||
f a = i (g a) : homotopy_of_eq (ap group_fun H) a
|
||||
... = i 1 : ap i p
|
||||
... = 1 : respect_one i
|
||||
end
|
||||
|
||||
definition comm_group_kernel_equivalent {A B : CommGroup} (C : CommGroup) (f : A →g B)(g : A →g C)(i : C →g B)(H : f = i ∘g g )(K : is_embedding i)
|
||||
: Π a:A , kernel_subgroup(g)(a) ↔ kernel_subgroup(f)(a) :=
|
||||
begin
|
||||
intro a,
|
||||
fapply iff.intro,
|
||||
exact comm_group_kernel_factor f g H a,
|
||||
intro p,
|
||||
apply @is_injective_of_is_embedding _ _ i _ (g a) 1,
|
||||
exact calc
|
||||
i (g a) = f a : (homotopy_of_eq (ap group_fun H) a)⁻¹
|
||||
... = 1 : p
|
||||
... = i 1 : (respect_one i)⁻¹
|
||||
end
|
||||
|
||||
definition comm_group_kernel_image_lift (A B : CommGroup) (f : A →g B)
|
||||
: Π a : A, kernel_subgroup(image_lift(f))(a) ↔ kernel_subgroup(f)(a) :=
|
||||
begin
|
||||
fapply comm_group_kernel_equivalent (comm_image f) (f) (image_lift(f)) (image_incl(f)),
|
||||
exact image_factor f,
|
||||
exact is_embedding_of_is_injective (image_incl_injective(f)),
|
||||
end
|
||||
|
||||
definition comm_group_kernel_quotient_to_image {A B : CommGroup} (f : A →g B)
|
||||
: quotient_comm_group (kernel_subgroup f) →g comm_image (f) :=
|
||||
begin
|
||||
fapply quotient_group_elim (image_lift f), intro a, intro p,
|
||||
apply iff.mpr (comm_group_kernel_image_lift _ _ f a) p
|
||||
end
|
||||
|
||||
definition is_surjective_kernel_quotient_to_image {A B : CommGroup} (f : A →g B)
|
||||
: is_surjective (comm_group_kernel_quotient_to_image f) :=
|
||||
begin
|
||||
intro b, exact sorry
|
||||
-- have H : is_surjective (image_lift f)
|
||||
end
|
||||
|
||||
print iff.mpr
|
||||
/- set generating normal subgroup -/
|
||||
|
||||
section
|
||||
|
|
Loading…
Reference in a new issue