WIP first group isomorphism them

This commit is contained in:
Steve Awodey 2016-11-17 16:25:14 -05:00
parent 9df0b25ae5
commit 6be1b46d5e

View file

@ -254,6 +254,54 @@ definition comm_group_first_iso_thm (A B : CommGroup) (f : A →g B) : quotient_
-- show that the above map is injective and surjective.
end
definition comm_group_kernel_factor {A B C: CommGroup} (f : A →g B)(g : A →g C){i : C →g B}(H : f = i ∘g g )
: Π a:A , kernel_subgroup(g)(a) → kernel_subgroup(f)(a) :=
begin
intro a,
intro p,
exact calc
f a = i (g a) : homotopy_of_eq (ap group_fun H) a
... = i 1 : ap i p
... = 1 : respect_one i
end
definition comm_group_kernel_equivalent {A B : CommGroup} (C : CommGroup) (f : A →g B)(g : A →g C)(i : C →g B)(H : f = i ∘g g )(K : is_embedding i)
: Π a:A , kernel_subgroup(g)(a) ↔ kernel_subgroup(f)(a) :=
begin
intro a,
fapply iff.intro,
exact comm_group_kernel_factor f g H a,
intro p,
apply @is_injective_of_is_embedding _ _ i _ (g a) 1,
exact calc
i (g a) = f a : (homotopy_of_eq (ap group_fun H) a)⁻¹
... = 1 : p
... = i 1 : (respect_one i)⁻¹
end
definition comm_group_kernel_image_lift (A B : CommGroup) (f : A →g B)
: Π a : A, kernel_subgroup(image_lift(f))(a) ↔ kernel_subgroup(f)(a) :=
begin
fapply comm_group_kernel_equivalent (comm_image f) (f) (image_lift(f)) (image_incl(f)),
exact image_factor f,
exact is_embedding_of_is_injective (image_incl_injective(f)),
end
definition comm_group_kernel_quotient_to_image {A B : CommGroup} (f : A →g B)
: quotient_comm_group (kernel_subgroup f) →g comm_image (f) :=
begin
fapply quotient_group_elim (image_lift f), intro a, intro p,
apply iff.mpr (comm_group_kernel_image_lift _ _ f a) p
end
definition is_surjective_kernel_quotient_to_image {A B : CommGroup} (f : A →g B)
: is_surjective (comm_group_kernel_quotient_to_image f) :=
begin
intro b, exact sorry
-- have H : is_surjective (image_lift f)
end
print iff.mpr
/- set generating normal subgroup -/
section