simplify proof of is_trunc_Grp
This commit is contained in:
parent
d7b8530718
commit
6de6e72a03
2 changed files with 9 additions and 7 deletions
|
@ -247,13 +247,8 @@ begin
|
|||
apply @is_trunc_equiv_closed_rev _ _ _ (ptruncconntype_eq_equiv X Y),
|
||||
apply @is_trunc_equiv_closed_rev _ _ _ (pequiv.sigma_char_equiv' X Y),
|
||||
apply @is_trunc_subtype (X →* Y) (λ f, trunctype.mk' -1 (is_equiv f)),
|
||||
apply is_trunc_pmap_of_is_conn X k.-2 (n + 1).-2 (n + k) Y,
|
||||
{ clear X Y, induction k with k IH,
|
||||
{ induction n with n IH,
|
||||
{ apply le.refl },
|
||||
{ exact trunc_index.succ_le_succ IH } },
|
||||
{ rewrite (trunc_index.succ_add_plus_two (nat.succ k).-2 (n + 1).-2),
|
||||
exact trunc_index.succ_le_succ IH } },
|
||||
apply is_trunc_pmap_of_is_conn X k.-2 (n.-1) (n + k) Y,
|
||||
{ apply le_of_eq, exact (sub_one_add_plus_two_sub_one n k)⁻¹ ⬝ !add_plus_two_comm },
|
||||
{ exact _ }
|
||||
end
|
||||
|
||||
|
|
|
@ -424,6 +424,13 @@ namespace trunc_index
|
|||
{ exact !succ_add_plus_two ⬝ ap succ IH}
|
||||
end
|
||||
|
||||
lemma sub_one_add_plus_two_sub_one (n m : ℕ) : n.-1 +2+ m.-1 = of_nat (n + m) :=
|
||||
begin
|
||||
induction m with m IH,
|
||||
{ reflexivity },
|
||||
{ exact ap succ IH }
|
||||
end
|
||||
|
||||
end trunc_index
|
||||
|
||||
namespace int
|
||||
|
|
Loading…
Reference in a new issue