fix error
This commit is contained in:
parent
38bff9ddb4
commit
6e6fad5cb2
3 changed files with 28 additions and 3 deletions
24
TODO.txt
24
TODO.txt
|
@ -8,3 +8,27 @@ talk with Favonia about:
|
|||
- higher cube filling strategies
|
||||
- HIT equivalences
|
||||
- algebra
|
||||
|
||||
|
||||
/-
|
||||
Adjointness:
|
||||
Σ X ⟶ Y X ∧ Y → Z
|
||||
======= ===========
|
||||
X → Ω Y X → (Y → Z)
|
||||
|
||||
Spectrum: Y : ℕ → Type* with e : Ω Yₙ₊₁ ≃* Yₙ.
|
||||
|
||||
|
||||
HOMOLOGY:
|
||||
Hₙ(X, Y) :≡? ∥ X ∧ Ω² (Y (n+2)) ∥₀ ≃ ∥ X ∧ Y n ∥₀
|
||||
|
||||
Eilenberg Steenrod-axioms:
|
||||
H : ℤ → Type* → AbGroup
|
||||
- functorial in second argument
|
||||
- (optional): respects pointed equivalences and pointed homotopies
|
||||
axioms:
|
||||
- the canonical map
|
||||
-
|
||||
- Given (Xᵢ)ᵢ : I → Type* (satisfying AC?) the canonical functor
|
||||
⊕ hₙ
|
||||
-/
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
-- Authors: Floris van Doorn
|
||||
|
||||
import homotopy.EM algebra.category.functor.equivalence ..pointed ..pointed_pi
|
||||
import homotopy.EM algebra.category.functor.equivalence types.pointed2 ..pointed_pi ..pointed
|
||||
|
||||
open eq equiv is_equiv algebra group nat pointed EM.ops is_trunc trunc susp function is_conn
|
||||
|
||||
|
@ -617,7 +617,8 @@ namespace EM
|
|||
(trivial_homotopy_group_of_is_trunc (ptrunc 0 A) !zero_lt_succ), exact sorry
|
||||
-- rexact isomorphism_of_equiv (equiv_of_isomorphism z) sorry
|
||||
},
|
||||
{ apply @is_conn_fun_trunc_elim, apply is_conn_fun_tr }
|
||||
{ apply @is_conn_fun_trunc_elim, apply is_conn_fun_tr },
|
||||
{ apply is_trunc_pfiber }
|
||||
end
|
||||
|
||||
definition pfiber_postnikov_map_succ (A : Type*) (n : ℕ) :
|
||||
|
|
|
@ -15,7 +15,7 @@ namespace cohomology
|
|||
|
||||
/- The cohomology of X with coefficients in Y is
|
||||
trunc 0 (A →* Ω[2] (Y (n+2)))
|
||||
In the file arrow_group (in algebra) we construct the group structor on this type.
|
||||
In the file arrow_group (in algebra) we construct the group structure on this type.
|
||||
-/
|
||||
definition cohomology (X : Type*) (Y : spectrum) (n : ℤ) : AbGroup :=
|
||||
AbGroup_trunc_pmap X (Y (n+2))
|
||||
|
|
Loading…
Reference in a new issue