fix error

This commit is contained in:
Floris van Doorn 2017-06-05 17:09:48 -04:00
parent 38bff9ddb4
commit 6e6fad5cb2
3 changed files with 28 additions and 3 deletions

View file

@ -8,3 +8,27 @@ talk with Favonia about:
- higher cube filling strategies
- HIT equivalences
- algebra
/-
Adjointness:
Σ X ⟶ Y X ∧ Y → Z
======= ===========
X → Ω Y X → (Y → Z)
Spectrum: Y : → Type* with e : Ω Yₙ₊₁ ≃* Yₙ.
HOMOLOGY:
Hₙ(X, Y) :≡? ∥ X ∧ Ω² (Y (n+2)) ∥₀ ≃ ∥ X ∧ Y n ∥₀
Eilenberg Steenrod-axioms:
H : → Type* → AbGroup
- functorial in second argument
- (optional): respects pointed equivalences and pointed homotopies
axioms:
- the canonical map
-
- Given (Xᵢ)ᵢ : I → Type* (satisfying AC?) the canonical functor
⊕ hₙ
-/

View file

@ -1,6 +1,6 @@
-- Authors: Floris van Doorn
import homotopy.EM algebra.category.functor.equivalence ..pointed ..pointed_pi
import homotopy.EM algebra.category.functor.equivalence types.pointed2 ..pointed_pi ..pointed
open eq equiv is_equiv algebra group nat pointed EM.ops is_trunc trunc susp function is_conn
@ -617,7 +617,8 @@ namespace EM
(trivial_homotopy_group_of_is_trunc (ptrunc 0 A) !zero_lt_succ), exact sorry
-- rexact isomorphism_of_equiv (equiv_of_isomorphism z) sorry
},
{ apply @is_conn_fun_trunc_elim, apply is_conn_fun_tr }
{ apply @is_conn_fun_trunc_elim, apply is_conn_fun_tr },
{ apply is_trunc_pfiber }
end
definition pfiber_postnikov_map_succ (A : Type*) (n : ) :

View file

@ -15,7 +15,7 @@ namespace cohomology
/- The cohomology of X with coefficients in Y is
trunc 0 (A →* Ω[2] (Y (n+2)))
In the file arrow_group (in algebra) we construct the group structor on this type.
In the file arrow_group (in algebra) we construct the group structure on this type.
-/
definition cohomology (X : Type*) (Y : spectrum) (n : ) : AbGroup :=
AbGroup_trunc_pmap X (Y (n+2))