finish the construction of the LES for spectrum maps
This commit is contained in:
parent
e7c3144dbd
commit
6fca83a2ed
1 changed files with 45 additions and 11 deletions
|
@ -6,14 +6,17 @@ Authors: Michael Shulman, Floris van Doorn
|
||||||
-/
|
-/
|
||||||
|
|
||||||
import types.int types.pointed types.trunc homotopy.susp algebra.homotopy_group homotopy.chain_complex cubical .splice homotopy.LES_of_homotopy_groups
|
import types.int types.pointed types.trunc homotopy.susp algebra.homotopy_group homotopy.chain_complex cubical .splice homotopy.LES_of_homotopy_groups
|
||||||
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi
|
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group
|
||||||
|
|
||||||
/-----------------------------------------
|
/-----------------------------------------
|
||||||
Stuff that should go in other files
|
Stuff that should go in other files
|
||||||
-----------------------------------------/
|
-----------------------------------------/
|
||||||
|
|
||||||
attribute equiv.symm equiv.trans is_equiv.is_equiv_ap fiber.equiv_postcompose fiber.equiv_precompose pequiv.to_pmap pequiv._trans_of_to_pmap [constructor]
|
attribute equiv.symm equiv.trans is_equiv.is_equiv_ap fiber.equiv_postcompose fiber.equiv_precompose pequiv.to_pmap pequiv._trans_of_to_pmap ghomotopy_group_succ_in isomorphism_of_eq [constructor]
|
||||||
attribute is_equiv.eq_of_fn_eq_fn' [unfold 3]
|
attribute is_equiv.eq_of_fn_eq_fn' [unfold 3]
|
||||||
|
attribute isomorphism._trans_of_to_hom [unfold 3]
|
||||||
|
attribute homomorphism.struct [unfold 3]
|
||||||
|
attribute pequiv.trans pequiv.symm [constructor]
|
||||||
|
|
||||||
namespace sigma
|
namespace sigma
|
||||||
|
|
||||||
|
@ -26,6 +29,25 @@ open sigma
|
||||||
namespace group
|
namespace group
|
||||||
open is_trunc
|
open is_trunc
|
||||||
definition pSet_of_Group (G : Group) : Set* := ptrunctype.mk G _ 1
|
definition pSet_of_Group (G : Group) : Set* := ptrunctype.mk G _ 1
|
||||||
|
|
||||||
|
definition pmap_of_isomorphism [constructor] {G₁ G₂ : Group} (φ : G₁ ≃g G₂) :
|
||||||
|
pType_of_Group G₁ →* pType_of_Group G₂ :=
|
||||||
|
pequiv_of_isomorphism φ
|
||||||
|
|
||||||
|
definition pequiv_of_isomorphism_of_eq {G₁ G₂ : Group} (p : G₁ = G₂) :
|
||||||
|
pequiv_of_isomorphism (isomorphism_of_eq p) = pequiv_of_eq (ap pType_of_Group p) :=
|
||||||
|
begin
|
||||||
|
induction p,
|
||||||
|
apply pequiv_eq,
|
||||||
|
fapply pmap_eq,
|
||||||
|
{ intro g, reflexivity},
|
||||||
|
{ apply is_prop.elim}
|
||||||
|
end
|
||||||
|
|
||||||
|
definition homomorphism_change_fun [constructor] {G₁ G₂ : Group} (φ : G₁ →g G₂) (f : G₁ → G₂)
|
||||||
|
(p : φ ~ f) : G₁ →g G₂ :=
|
||||||
|
homomorphism.mk f (λg h, (p (g * h))⁻¹ ⬝ to_respect_mul φ g h ⬝ ap011 mul (p g) (p h))
|
||||||
|
|
||||||
end group open group
|
end group open group
|
||||||
|
|
||||||
namespace eq
|
namespace eq
|
||||||
|
@ -409,12 +431,26 @@ namespace spectrum
|
||||||
intro n, exact sorry
|
intro n, exact sorry
|
||||||
end
|
end
|
||||||
|
|
||||||
definition π_glue (X : spectrum) (n : ℤ) : π*[2] (X (2 - succ n)) ≃* π*[3] (X (2 - n)) :=
|
definition π_glue (X : spectrum) (n : ℤ) : π*[2] (X (2 - succ n)) ≃* π*[3] (X (2 - n)) :=
|
||||||
begin
|
begin
|
||||||
refine phomotopy_group_pequiv 2 (equiv_glue X (2 - succ n)) ⬝e* _,
|
refine phomotopy_group_pequiv 2 (equiv_glue X (2 - succ n)) ⬝e* _,
|
||||||
assert H : succ (2 - succ n) = 2 - n, exact ap succ !sub_sub⁻¹ ⬝ sub_add_cancel (2-n) 1,
|
assert H : succ (2 - succ n) = 2 - n, exact ap succ !sub_sub⁻¹ ⬝ sub_add_cancel (2-n) 1,
|
||||||
refine pequiv_of_eq (ap (λn, π*[2] (Ω (X n))) H) ⬝e* _,
|
exact pequiv_of_eq (ap (λn, π*[2] (Ω (X n))) H),
|
||||||
refine (pequiv_of_eq (phomotopy_group_succ_in (X (2 - n)) 2))⁻¹ᵉ*,
|
end
|
||||||
|
|
||||||
|
definition πg_glue (X : spectrum) (n : ℤ) : πg[1+1] (X (2 - succ n)) ≃g πg[2+1] (X (2 - n)) :=
|
||||||
|
begin
|
||||||
|
refine homotopy_group_isomorphism_of_pequiv 1 (equiv_glue X (2 - succ n)) ⬝g _,
|
||||||
|
assert H : succ (2 - succ n) = 2 - n, exact ap succ !sub_sub⁻¹ ⬝ sub_add_cancel (2-n) 1,
|
||||||
|
exact isomorphism_of_eq (ap (λn, πg[1+1] (Ω (X n))) H),
|
||||||
|
end
|
||||||
|
|
||||||
|
definition πg_glue_homotopy_π_glue (X : spectrum) (n : ℤ) : πg_glue X n ~ π_glue X n :=
|
||||||
|
begin
|
||||||
|
intro x,
|
||||||
|
esimp [πg_glue, π_glue],
|
||||||
|
apply ap (λp, cast p _),
|
||||||
|
refine !ap_compose'⁻¹ ⬝ !ap_compose'
|
||||||
end
|
end
|
||||||
|
|
||||||
definition π_glue_square {X Y : spectrum} (f : X →ₛ Y) (n : ℤ) :
|
definition π_glue_square {X Y : spectrum} (f : X →ₛ Y) (n : ℤ) :
|
||||||
|
@ -429,11 +465,7 @@ namespace spectrum
|
||||||
refine pwhisker_left _ H1 ⬝* _, clear H1,
|
refine pwhisker_left _ H1 ⬝* _, clear H1,
|
||||||
refine !passoc⁻¹* ⬝* _ ⬝* !passoc,
|
refine !passoc⁻¹* ⬝* _ ⬝* !passoc,
|
||||||
apply pwhisker_right,
|
apply pwhisker_right,
|
||||||
rewrite [+ to_pmap_pequiv_trans],
|
refine !pequiv_of_eq_commute ⬝* by reflexivity
|
||||||
refine !passoc ⬝* _,
|
|
||||||
refine pwhisker_left _ !pequiv_of_eq_commute ⬝* _,
|
|
||||||
refine !passoc⁻¹* ⬝* _ ⬝* !passoc,
|
|
||||||
reflexivity -- if we generalize 2 to n, this is not reflexivity anymore
|
|
||||||
end
|
end
|
||||||
|
|
||||||
section
|
section
|
||||||
|
@ -465,7 +497,9 @@ namespace spectrum
|
||||||
Π(v : +3ℤ), is_homomorphism (cc_to_fn LES_of_shomotopy_groups v)
|
Π(v : +3ℤ), is_homomorphism (cc_to_fn LES_of_shomotopy_groups v)
|
||||||
| (n, fin.mk 0 H) := proof homomorphism.struct (πₛ→[n] f) qed
|
| (n, fin.mk 0 H) := proof homomorphism.struct (πₛ→[n] f) qed
|
||||||
| (n, fin.mk 1 H) := proof homomorphism.struct (πₛ→[n] (spoint f)) qed
|
| (n, fin.mk 1 H) := proof homomorphism.struct (πₛ→[n] (spoint f)) qed
|
||||||
| (n, fin.mk 2 H) := begin exact sorry end
|
| (n, fin.mk 2 H) := proof homomorphism.struct
|
||||||
|
(homomorphism_LES_of_homotopy_groups_fun (f (2 - n)) (1, 2) ∘g
|
||||||
|
homomorphism_change_fun (πg_glue Y n) _ (πg_glue_homotopy_π_glue Y n)) qed
|
||||||
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||||||
|
|
||||||
-- In the comments below is a start on an explicit description of the LES for spectra
|
-- In the comments below is a start on an explicit description of the LES for spectra
|
||||||
|
|
Loading…
Reference in a new issue