finish the construction of the LES for spectrum maps

This commit is contained in:
Floris van Doorn 2016-09-15 19:19:03 -04:00
parent e7c3144dbd
commit 6fca83a2ed

View file

@ -6,14 +6,17 @@ Authors: Michael Shulman, Floris van Doorn
-/ -/
import types.int types.pointed types.trunc homotopy.susp algebra.homotopy_group homotopy.chain_complex cubical .splice homotopy.LES_of_homotopy_groups import types.int types.pointed types.trunc homotopy.susp algebra.homotopy_group homotopy.chain_complex cubical .splice homotopy.LES_of_homotopy_groups
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group
/----------------------------------------- /-----------------------------------------
Stuff that should go in other files Stuff that should go in other files
-----------------------------------------/ -----------------------------------------/
attribute equiv.symm equiv.trans is_equiv.is_equiv_ap fiber.equiv_postcompose fiber.equiv_precompose pequiv.to_pmap pequiv._trans_of_to_pmap [constructor] attribute equiv.symm equiv.trans is_equiv.is_equiv_ap fiber.equiv_postcompose fiber.equiv_precompose pequiv.to_pmap pequiv._trans_of_to_pmap ghomotopy_group_succ_in isomorphism_of_eq [constructor]
attribute is_equiv.eq_of_fn_eq_fn' [unfold 3] attribute is_equiv.eq_of_fn_eq_fn' [unfold 3]
attribute isomorphism._trans_of_to_hom [unfold 3]
attribute homomorphism.struct [unfold 3]
attribute pequiv.trans pequiv.symm [constructor]
namespace sigma namespace sigma
@ -26,6 +29,25 @@ open sigma
namespace group namespace group
open is_trunc open is_trunc
definition pSet_of_Group (G : Group) : Set* := ptrunctype.mk G _ 1 definition pSet_of_Group (G : Group) : Set* := ptrunctype.mk G _ 1
definition pmap_of_isomorphism [constructor] {G₁ G₂ : Group} (φ : G₁ ≃g G₂) :
pType_of_Group G₁ →* pType_of_Group G₂ :=
pequiv_of_isomorphism φ
definition pequiv_of_isomorphism_of_eq {G₁ G₂ : Group} (p : G₁ = G₂) :
pequiv_of_isomorphism (isomorphism_of_eq p) = pequiv_of_eq (ap pType_of_Group p) :=
begin
induction p,
apply pequiv_eq,
fapply pmap_eq,
{ intro g, reflexivity},
{ apply is_prop.elim}
end
definition homomorphism_change_fun [constructor] {G₁ G₂ : Group} (φ : G₁ →g G₂) (f : G₁ → G₂)
(p : φ ~ f) : G₁ →g G₂ :=
homomorphism.mk f (λg h, (p (g * h))⁻¹ ⬝ to_respect_mul φ g h ⬝ ap011 mul (p g) (p h))
end group open group end group open group
namespace eq namespace eq
@ -409,12 +431,26 @@ namespace spectrum
intro n, exact sorry intro n, exact sorry
end end
definition π_glue (X : spectrum) (n : ) : π*[2] (X (2 - succ n)) ≃* π*[3] (X (2 - n)) := definition π_glue (X : spectrum) (n : ) : π*[2] (X (2 - succ n)) ≃* π*[3] (X (2 - n)) :=
begin begin
refine phomotopy_group_pequiv 2 (equiv_glue X (2 - succ n)) ⬝e* _, refine phomotopy_group_pequiv 2 (equiv_glue X (2 - succ n)) ⬝e* _,
assert H : succ (2 - succ n) = 2 - n, exact ap succ !sub_sub⁻¹ ⬝ sub_add_cancel (2-n) 1, assert H : succ (2 - succ n) = 2 - n, exact ap succ !sub_sub⁻¹ ⬝ sub_add_cancel (2-n) 1,
refine pequiv_of_eq (ap (λn, π*[2] (Ω (X n))) H) ⬝e* _, exact pequiv_of_eq (ap (λn, π*[2] (Ω (X n))) H),
refine (pequiv_of_eq (phomotopy_group_succ_in (X (2 - n)) 2))⁻¹ᵉ*, end
definition πg_glue (X : spectrum) (n : ) : πg[1+1] (X (2 - succ n)) ≃g πg[2+1] (X (2 - n)) :=
begin
refine homotopy_group_isomorphism_of_pequiv 1 (equiv_glue X (2 - succ n)) ⬝g _,
assert H : succ (2 - succ n) = 2 - n, exact ap succ !sub_sub⁻¹ ⬝ sub_add_cancel (2-n) 1,
exact isomorphism_of_eq (ap (λn, πg[1+1] (Ω (X n))) H),
end
definition πg_glue_homotopy_π_glue (X : spectrum) (n : ) : πg_glue X n ~ π_glue X n :=
begin
intro x,
esimp [πg_glue, π_glue],
apply ap (λp, cast p _),
refine !ap_compose'⁻¹ ⬝ !ap_compose'
end end
definition π_glue_square {X Y : spectrum} (f : X →ₛ Y) (n : ) : definition π_glue_square {X Y : spectrum} (f : X →ₛ Y) (n : ) :
@ -429,11 +465,7 @@ namespace spectrum
refine pwhisker_left _ H1 ⬝* _, clear H1, refine pwhisker_left _ H1 ⬝* _, clear H1,
refine !passoc⁻¹* ⬝* _ ⬝* !passoc, refine !passoc⁻¹* ⬝* _ ⬝* !passoc,
apply pwhisker_right, apply pwhisker_right,
rewrite [+ to_pmap_pequiv_trans], refine !pequiv_of_eq_commute ⬝* by reflexivity
refine !passoc ⬝* _,
refine pwhisker_left _ !pequiv_of_eq_commute ⬝* _,
refine !passoc⁻¹* ⬝* _ ⬝* !passoc,
reflexivity -- if we generalize 2 to n, this is not reflexivity anymore
end end
section section
@ -465,7 +497,9 @@ namespace spectrum
Π(v : +3), is_homomorphism (cc_to_fn LES_of_shomotopy_groups v) Π(v : +3), is_homomorphism (cc_to_fn LES_of_shomotopy_groups v)
| (n, fin.mk 0 H) := proof homomorphism.struct (πₛ→[n] f) qed | (n, fin.mk 0 H) := proof homomorphism.struct (πₛ→[n] f) qed
| (n, fin.mk 1 H) := proof homomorphism.struct (πₛ→[n] (spoint f)) qed | (n, fin.mk 1 H) := proof homomorphism.struct (πₛ→[n] (spoint f)) qed
| (n, fin.mk 2 H) := begin exact sorry end | (n, fin.mk 2 H) := proof homomorphism.struct
(homomorphism_LES_of_homotopy_groups_fun (f (2 - n)) (1, 2) ∘g
homomorphism_change_fun (πg_glue Y n) _ (πg_glue_homotopy_π_glue Y n)) qed
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end | (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
-- In the comments below is a start on an explicit description of the LES for spectra -- In the comments below is a start on an explicit description of the LES for spectra