fill in sorry in spherical_fibrations
This commit is contained in:
parent
683a515178
commit
e7c3144dbd
1 changed files with 6 additions and 3 deletions
|
@ -1,7 +1,7 @@
|
|||
import homotopy.join homotopy.smash
|
||||
|
||||
open eq equiv trunc function bool join sphere sphere_index sphere.ops prod
|
||||
open pointed sigma smash
|
||||
open pointed sigma smash is_trunc
|
||||
|
||||
namespace spherical_fibrations
|
||||
|
||||
|
@ -18,7 +18,10 @@ namespace spherical_fibrations
|
|||
pt = pt :> BG n
|
||||
|
||||
definition G_char (n : ℕ) : G n ≃ (S n..-1 ≃ S n..-1) :=
|
||||
sorry
|
||||
calc
|
||||
G n ≃ Σ(p : S n..-1 = S n..-1), _ : sigma_eq_equiv
|
||||
... ≃ (S n..-1 = S n..-1) : sigma_equiv_of_is_contr_right
|
||||
... ≃ (S n..-1 ≃ S n..-1) : eq_equiv_equiv
|
||||
|
||||
definition mirror (n : ℕ) : S n..-1 → G n :=
|
||||
begin
|
||||
|
@ -134,7 +137,7 @@ namespace spherical_fibrations
|
|||
- all bundles on S 3 are trivial, incl. tangent bundle
|
||||
- Adams' result on vector fields on spheres:
|
||||
there are maximally ρ(n)-1 indep.sections of the tangent bundle of S (n-1)
|
||||
where ρ(n) is the n'th Radon-Hurwitz number.→
|
||||
where ρ(n) is the n'th Radon-Hurwitz number.→
|
||||
-/
|
||||
|
||||
-- tangent bundle on S 2:
|
||||
|
|
Loading…
Reference in a new issue