This commit is contained in:
Egbert Rijke 2017-01-26 16:56:01 -05:00
commit 701c77ba6f
3 changed files with 29 additions and 4 deletions

View file

@ -0,0 +1 @@
Steve@steveawodeysAir.wv.cc.cmu.edu.6485

View file

@ -372,7 +372,7 @@ definition is_embedding_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
exact is_embedding_kernel_quotient_extension f
end
definition ab_group_first_iso_thm (A B : AbGroup) (f : A →g B)
definition ab_group_first_iso_thm {A B : AbGroup} (f : A →g B)
: quotient_ab_group (kernel_subgroup f) ≃g ab_image f :=
begin
fapply isomorphism.mk,
@ -382,8 +382,11 @@ definition ab_group_first_iso_thm (A B : AbGroup) (f : A →g B)
exact is_surjective_kernel_quotient_to_image f
end
definition codomain_surjection_is_quotient (A B : AbGroup) (f : A →g B)( H : is_surjective f)
: quotient_ab_group (kernel_subgroup f) ≃g B :=
begin
exact (ab_group_first_iso_thm f) ⬝g (iso_surjection_ab_image_incl f H)
end
-- print iff.mpr

View file

@ -281,7 +281,28 @@ namespace group
definition image_incl {G H : Group} (f : G →g H) : image f →g H :=
incl_of_subgroup (image_subgroup f)
definition comm_image_incl {A B : AbGroup} (f : A →g B) : ab_image f →g B := incl_of_subgroup (image_subgroup f)
definition ab_image_incl {A B : AbGroup} (f : A →g B) : ab_image f →g B := incl_of_subgroup (image_subgroup f)
definition is_equiv_surjection_ab_image_incl {A B : AbGroup} (f : A →g B) (H : is_surjective f) : is_equiv (ab_image_incl f ) :=
begin
fapply is_equiv.adjointify (ab_image_incl f),
intro b,
fapply sigma.mk,
exact b,
exact H b,
intro b,
reflexivity,
intro x,
apply subtype_eq,
reflexivity
end
definition iso_surjection_ab_image_incl {A B : AbGroup} (f : A →g B) (H : is_surjective f) : ab_image f ≃g B :=
begin
fapply isomorphism.mk,
exact (ab_image_incl f),
exact is_equiv_surjection_ab_image_incl f H
end
definition hom_lift {G H : Group} (f : G →g H) (K : subgroup_rel H) (Hyp : Π (g : G), K (f g)) : G →g subgroup K :=
begin