Merge branch 'master' of https://github.com/cmu-phil/Spectral
This commit is contained in:
commit
701c77ba6f
3 changed files with 29 additions and 4 deletions
1
algebra/.#exact_couple.hlean
Symbolic link
1
algebra/.#exact_couple.hlean
Symbolic link
|
@ -0,0 +1 @@
|
|||
Steve@steveawodeysAir.wv.cc.cmu.edu.6485
|
|
@ -372,7 +372,7 @@ definition is_embedding_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
|
|||
exact is_embedding_kernel_quotient_extension f
|
||||
end
|
||||
|
||||
definition ab_group_first_iso_thm (A B : AbGroup) (f : A →g B)
|
||||
definition ab_group_first_iso_thm {A B : AbGroup} (f : A →g B)
|
||||
: quotient_ab_group (kernel_subgroup f) ≃g ab_image f :=
|
||||
begin
|
||||
fapply isomorphism.mk,
|
||||
|
@ -382,8 +382,11 @@ definition ab_group_first_iso_thm (A B : AbGroup) (f : A →g B)
|
|||
exact is_surjective_kernel_quotient_to_image f
|
||||
end
|
||||
|
||||
|
||||
|
||||
definition codomain_surjection_is_quotient (A B : AbGroup) (f : A →g B)( H : is_surjective f)
|
||||
: quotient_ab_group (kernel_subgroup f) ≃g B :=
|
||||
begin
|
||||
exact (ab_group_first_iso_thm f) ⬝g (iso_surjection_ab_image_incl f H)
|
||||
end
|
||||
|
||||
|
||||
-- print iff.mpr
|
||||
|
|
|
@ -281,7 +281,28 @@ namespace group
|
|||
definition image_incl {G H : Group} (f : G →g H) : image f →g H :=
|
||||
incl_of_subgroup (image_subgroup f)
|
||||
|
||||
definition comm_image_incl {A B : AbGroup} (f : A →g B) : ab_image f →g B := incl_of_subgroup (image_subgroup f)
|
||||
definition ab_image_incl {A B : AbGroup} (f : A →g B) : ab_image f →g B := incl_of_subgroup (image_subgroup f)
|
||||
|
||||
definition is_equiv_surjection_ab_image_incl {A B : AbGroup} (f : A →g B) (H : is_surjective f) : is_equiv (ab_image_incl f ) :=
|
||||
begin
|
||||
fapply is_equiv.adjointify (ab_image_incl f),
|
||||
intro b,
|
||||
fapply sigma.mk,
|
||||
exact b,
|
||||
exact H b,
|
||||
intro b,
|
||||
reflexivity,
|
||||
intro x,
|
||||
apply subtype_eq,
|
||||
reflexivity
|
||||
end
|
||||
|
||||
definition iso_surjection_ab_image_incl {A B : AbGroup} (f : A →g B) (H : is_surjective f) : ab_image f ≃g B :=
|
||||
begin
|
||||
fapply isomorphism.mk,
|
||||
exact (ab_image_incl f),
|
||||
exact is_equiv_surjection_ab_image_incl f H
|
||||
end
|
||||
|
||||
definition hom_lift {G H : Group} (f : G →g H) (K : subgroup_rel H) (Hyp : Π (g : G), K (f g)) : G →g subgroup K :=
|
||||
begin
|
||||
|
|
Loading…
Reference in a new issue