equality and isomorphisms of quotient groups
This commit is contained in:
parent
c67fd11633
commit
760af1af79
1 changed files with 26 additions and 5 deletions
|
@ -314,14 +314,14 @@ namespace group
|
||||||
reflexivity
|
reflexivity
|
||||||
end
|
end
|
||||||
|
|
||||||
definition subgroup_rel_eq {K L : subgroup_rel A} (forth : Π (a : A), K a → L a) (opforth : Π (a : A), L a → K a) : K = L :=
|
definition subgroup_rel_eq {K L : subgroup_rel A} (K_in_L : Π (a : A), K a → L a) (L_in_K : Π (a : A), L a → K a) : K = L :=
|
||||||
begin
|
begin
|
||||||
have htpy : Π (a : A), K a ≃ L a,
|
have htpy : Π (a : A), K a ≃ L a,
|
||||||
begin
|
begin
|
||||||
intro a,
|
intro a,
|
||||||
fapply equiv_of_is_prop,
|
fapply equiv_of_is_prop,
|
||||||
fapply forth a,
|
fapply K_in_L a,
|
||||||
fapply opforth a,
|
fapply L_in_K a,
|
||||||
end,
|
end,
|
||||||
exact subgroup_rel_eq' htpy,
|
exact subgroup_rel_eq' htpy,
|
||||||
end
|
end
|
||||||
|
@ -331,8 +331,29 @@ namespace group
|
||||||
induction p, reflexivity
|
induction p, reflexivity
|
||||||
end
|
end
|
||||||
|
|
||||||
definition eq_of_ab_qg_group {K L : subgroup_rel A} (forth : Π (a : A), K a → L a) (opforth : Π (a : A), L a → K a) : quotient_ab_group K = quotient_ab_group L :=
|
definition iso_of_eq {B : AbGroup} (p : A = B) : A ≃g B :=
|
||||||
eq_of_ab_qg_group' (subgroup_rel_eq forth opforth)
|
begin
|
||||||
|
induction p, fapply isomorphism.mk, exact gid A, fapply adjointify, exact id, intro a, reflexivity, intro a, reflexivity
|
||||||
|
end
|
||||||
|
|
||||||
|
definition iso_of_ab_qg_group' {K L : subgroup_rel A} (p : K = L) : quotient_ab_group K ≃g quotient_ab_group L :=
|
||||||
|
iso_of_eq (eq_of_ab_qg_group' p)
|
||||||
|
|
||||||
|
definition htpy_of_ab_qg_map' {K L : subgroup_rel A} (p : K = L) : (iso_of_ab_qg_group' p) ∘g ab_qg_map K ~ ab_qg_map L :=
|
||||||
|
begin
|
||||||
|
induction p, reflexivity
|
||||||
|
end
|
||||||
|
|
||||||
|
definition eq_of_ab_qg_group {K L : subgroup_rel A} (K_in_L : Π (a : A), K a → L a) (L_in_K : Π (a : A), L a → K a) : quotient_ab_group K = quotient_ab_group L :=
|
||||||
|
eq_of_ab_qg_group' (subgroup_rel_eq K_in_L L_in_K)
|
||||||
|
|
||||||
|
definition iso_of_ab_qg_group {K L : subgroup_rel A} (K_in_L : Π (a : A), K a → L a) (L_in_K : Π (a : A), L a → K a) : quotient_ab_group K ≃g quotient_ab_group L :=
|
||||||
|
iso_of_eq (eq_of_ab_qg_group K_in_L L_in_K)
|
||||||
|
|
||||||
|
definition eq_of_ab_qg_group_triangle {K L : subgroup_rel A} (K_in_L : Π (a : A), K a → L a) (L_in_K : Π (a : A), L a → K a) : iso_of_ab_qg_group K_in_L L_in_K ∘g ab_qg_map K ~ ab_qg_map L :=
|
||||||
|
begin
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
end quotient_group_iso_ua
|
end quotient_group_iso_ua
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue