equality and isomorphisms of quotient groups

This commit is contained in:
Egbert Rijke 2017-05-11 15:00:30 -04:00
parent c67fd11633
commit 760af1af79

View file

@ -314,14 +314,14 @@ namespace group
reflexivity reflexivity
end end
definition subgroup_rel_eq {K L : subgroup_rel A} (forth : Π (a : A), K a → L a) (opforth : Π (a : A), L a → K a) : K = L := definition subgroup_rel_eq {K L : subgroup_rel A} (K_in_L : Π (a : A), K a → L a) (L_in_K : Π (a : A), L a → K a) : K = L :=
begin begin
have htpy : Π (a : A), K a ≃ L a, have htpy : Π (a : A), K a ≃ L a,
begin begin
intro a, intro a,
fapply equiv_of_is_prop, fapply equiv_of_is_prop,
fapply forth a, fapply K_in_L a,
fapply opforth a, fapply L_in_K a,
end, end,
exact subgroup_rel_eq' htpy, exact subgroup_rel_eq' htpy,
end end
@ -331,8 +331,29 @@ namespace group
induction p, reflexivity induction p, reflexivity
end end
definition eq_of_ab_qg_group {K L : subgroup_rel A} (forth : Π (a : A), K a → L a) (opforth : Π (a : A), L a → K a) : quotient_ab_group K = quotient_ab_group L := definition iso_of_eq {B : AbGroup} (p : A = B) : A ≃g B :=
eq_of_ab_qg_group' (subgroup_rel_eq forth opforth) begin
induction p, fapply isomorphism.mk, exact gid A, fapply adjointify, exact id, intro a, reflexivity, intro a, reflexivity
end
definition iso_of_ab_qg_group' {K L : subgroup_rel A} (p : K = L) : quotient_ab_group K ≃g quotient_ab_group L :=
iso_of_eq (eq_of_ab_qg_group' p)
definition htpy_of_ab_qg_map' {K L : subgroup_rel A} (p : K = L) : (iso_of_ab_qg_group' p) ∘g ab_qg_map K ~ ab_qg_map L :=
begin
induction p, reflexivity
end
definition eq_of_ab_qg_group {K L : subgroup_rel A} (K_in_L : Π (a : A), K a → L a) (L_in_K : Π (a : A), L a → K a) : quotient_ab_group K = quotient_ab_group L :=
eq_of_ab_qg_group' (subgroup_rel_eq K_in_L L_in_K)
definition iso_of_ab_qg_group {K L : subgroup_rel A} (K_in_L : Π (a : A), K a → L a) (L_in_K : Π (a : A), L a → K a) : quotient_ab_group K ≃g quotient_ab_group L :=
iso_of_eq (eq_of_ab_qg_group K_in_L L_in_K)
definition eq_of_ab_qg_group_triangle {K L : subgroup_rel A} (K_in_L : Π (a : A), K a → L a) (L_in_K : Π (a : A), L a → K a) : iso_of_ab_qg_group K_in_L L_in_K ∘g ab_qg_map K ~ ab_qg_map L :=
begin
end
end quotient_group_iso_ua end quotient_group_iso_ua