Removing troublesome composition of group homomorphism in quotient_group
This commit is contained in:
parent
21a0dcfcfe
commit
7ed3e47e09
1 changed files with 5 additions and 5 deletions
|
@ -227,10 +227,10 @@ namespace group
|
||||||
unfold qg_map, esimp, exact to_respect_mul f g h }
|
unfold qg_map, esimp, exact to_respect_mul f g h }
|
||||||
end
|
end
|
||||||
|
|
||||||
definition quotient_group_compute (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) :
|
definition quotient_group_compute (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) (g : G) :
|
||||||
quotient_group_elim f H ∘g qg_map N ~ f :=
|
quotient_group_elim f H (qg_map N g) = f g :=
|
||||||
begin
|
begin
|
||||||
intro g, reflexivity
|
reflexivity
|
||||||
end
|
end
|
||||||
|
|
||||||
definition gelim_unique (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) (k : quotient_group N →g G')
|
definition gelim_unique (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) (k : quotient_group N →g G')
|
||||||
|
@ -247,7 +247,7 @@ namespace group
|
||||||
end
|
end
|
||||||
|
|
||||||
definition qg_universal_property (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) :
|
definition qg_universal_property (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) :
|
||||||
is_contr (Σ(g : quotient_group N →g G'), g ∘g qg_map N ~ f) :=
|
is_contr (Σ(g : quotient_group N →g G'), g ∘ qg_map N ~ f) :=
|
||||||
begin
|
begin
|
||||||
fapply is_contr.mk,
|
fapply is_contr.mk,
|
||||||
-- give center of contraction
|
-- give center of contraction
|
||||||
|
@ -442,7 +442,7 @@ definition kernel_quotient_extension {A B : AbGroup} (f : A →g B) : quotient_a
|
||||||
end
|
end
|
||||||
|
|
||||||
definition kernel_quotient_extension_triangle {A B : AbGroup} (f : A →g B) :
|
definition kernel_quotient_extension_triangle {A B : AbGroup} (f : A →g B) :
|
||||||
kernel_quotient_extension f ∘g ab_qg_map (kernel_subgroup f) ~ f :=
|
kernel_quotient_extension f ∘ ab_qg_map (kernel_subgroup f) ~ f :=
|
||||||
begin
|
begin
|
||||||
intro a,
|
intro a,
|
||||||
apply quotient_group_compute
|
apply quotient_group_compute
|
||||||
|
|
Loading…
Reference in a new issue