the wedge extension lemma actually works!
This commit is contained in:
parent
f1fe71b0a8
commit
8acdbf3f67
1 changed files with 56 additions and 0 deletions
|
@ -884,7 +884,63 @@ namespace pushout
|
||||||
apply pushout_of_equiv_right
|
apply pushout_of_equiv_right
|
||||||
end
|
end
|
||||||
|
|
||||||
|
end pushout
|
||||||
|
|
||||||
|
namespace pushout -- should this be wedge?
|
||||||
|
/- the wedge connectivity lemma actually works as intended -/
|
||||||
|
section
|
||||||
|
open trunc_index is_conn prod prod.ops
|
||||||
|
|
||||||
|
-- of course, the tricky part is coming up with the statement;
|
||||||
|
-- the proof is easy!
|
||||||
|
private definition tricky_lemma {A B : Type} (f : A → B) {a a' : A}
|
||||||
|
(p : a = a') (P : B → Type) {r : f a = f a'} (α : ap f p = r)
|
||||||
|
(s : Π x, P (f x)) (e : Π y, P y)
|
||||||
|
(q : e (f a) = s a) (q' : e (f a') = s a')
|
||||||
|
(H : (ap (transport P r) q)⁻¹ ⬝ (apdt e r ⬝ q')
|
||||||
|
= (tr_compose P f p (s a) ⬝ ap (λ u, transport P u (s a)) α)⁻¹ ⬝ apdt s p)
|
||||||
|
: q =[p] q' :=
|
||||||
|
begin
|
||||||
|
induction α, induction p, apply pathover_idp_of_eq, esimp, esimp at H,
|
||||||
|
rewrite ap_id at H, rewrite idp_con at H,
|
||||||
|
exact (eq_con_of_inv_con_eq H)⁻¹,
|
||||||
|
end
|
||||||
|
|
||||||
|
parameters {A B : Type*}
|
||||||
|
|
||||||
|
private definition section_of_glue (P : A × B → Type)
|
||||||
|
(s : Π w, P (prod_of_wedge w))
|
||||||
|
: (s (inl pt) = s (inr pt) :> P (pt, pt)) :=
|
||||||
|
((tr_compose P prod_of_wedge (glue star) (s (inl pt)))
|
||||||
|
⬝ (ap (λ q, transport P q (s (inl pt)))
|
||||||
|
(wedge.elim_glue (λ a, (a, pt)) (λ b, (pt, b)) idp)))⁻¹ ⬝ (apdt s (glue star))
|
||||||
|
|
||||||
|
parameters (n m : ℕ) [cA : is_conn n A] [cB : is_conn m B]
|
||||||
|
include cA cB
|
||||||
|
|
||||||
|
definition is_conn_fun_prod_of_wedge : is_conn_fun (m + n) (@prod_of_wedge A B) :=
|
||||||
|
begin
|
||||||
|
apply is_conn.is_conn_fun.intro, intro P, fapply is_retraction.mk,
|
||||||
|
{ intros s z, induction z with a b,
|
||||||
|
exact @wedge_extension.ext A B n m cA cB (λ a b, P (a, b))
|
||||||
|
(λ a b, transport (λ k, is_trunc k (P (a, b))) (of_nat_add_of_nat m n)
|
||||||
|
(trunctype.struct (P (a, b))))
|
||||||
|
(λ a, s (inl a)) (λ b, s (inr b))
|
||||||
|
(section_of_glue P s) a b },
|
||||||
|
{ intro s, apply eq_of_homotopy, intro w, induction w with a b,
|
||||||
|
{ esimp, apply wedge_extension.β_left },
|
||||||
|
{ esimp, apply wedge_extension.β_right },
|
||||||
|
{ esimp, apply @tricky_lemma (wedge A B) (A × B)
|
||||||
|
(@prod_of_wedge A B) (inl pt) (inr pt) wedge.glue P idp
|
||||||
|
(wedge.elim_glue (λ a, (a, pt)) (λ b, (pt, b)) idp) s
|
||||||
|
(prod.rec (@wedge_extension.ext A B n m cA cB (λ a b, P (a, b))
|
||||||
|
(λ a b, transport (λ k, is_trunc k (P (a, b))) (of_nat_add_of_nat m n)
|
||||||
|
(trunctype.struct (P (a, b))))
|
||||||
|
(λ a, s (inl a)) (λ b, s (inr b)) (section_of_glue P s))),
|
||||||
|
esimp, rewrite [ap_id,idp_con], apply wedge_extension.coh } }
|
||||||
|
end
|
||||||
|
|
||||||
|
end
|
||||||
end pushout
|
end pushout
|
||||||
|
|
||||||
namespace pushout
|
namespace pushout
|
||||||
|
|
Loading…
Reference in a new issue