seq_colim universal property

This commit is contained in:
Robert Rose 2017-06-08 18:17:23 -04:00
parent 480bcd5dee
commit 8b97339ffa
3 changed files with 42 additions and 5 deletions

View file

@ -644,7 +644,7 @@ definition codomain_surjection_is_quotient_triangle {A B : AbGroup} (f : A →g
end
definition gqg_elim_compute (f : A₁ →g A₂) (H : Π⦃g⦄, S g → f g = 1)
: gqg_elim f H ∘g gqg_map ~ f :=
: gqg_elim f H ∘ gqg_map ~ f :=
begin
intro g, reflexivity
end

View file

@ -1,4 +1,4 @@
import .direct_sum .quotient_group
import .direct_sum .quotient_group ..move_to_lib
open eq algebra is_trunc set_quotient relation sigma prod sum list trunc function equiv sigma.ops nat
@ -16,15 +16,17 @@ namespace group
definition seq_colim : AbGroup := quotient_ab_group_gen seq_colim_carrier (λa, ∥seq_colim_rel a∥)
definition seq_colim_incl [constructor] (i : ) : A i →g seq_colim :=
qg_map _ ∘g dirsum_incl A i
gqg_map _ _ ∘g dirsum_incl A i
definition seq_colim_quotient (h : Πi, A i →g A') (k : Πi a, h i a = h (succ i) (f i a))
(v : seq_colim_carrier) (r : ∥seq_colim_rel v∥) : dirsum_elim h v = 1 :=
begin
induction r with r, induction r,
refine !to_respect_mul ⬝ _,
refine ap (λγ, group_fun (dirsum_elim h) (group_fun (dirsum_incl A i) a) * group_fun (dirsum_elim h) γ) (!to_respect_inv)⁻¹ ⬝ _,
refine ap (λγ, γ * group_fun (dirsum_elim h) (group_fun (dirsum_incl A (succ i)) (f i a)⁻¹)) !dirsum_elim_compute ⬝ _,
refine ap (λγ, group_fun (dirsum_elim h) (group_fun (dirsum_incl A i) a) * group_fun (dirsum_elim h) γ)
(!to_respect_inv)⁻¹ ⬝ _,
refine ap (λγ, γ * group_fun (dirsum_elim h) (group_fun (dirsum_incl A (succ i)) (f i a)⁻¹))
!dirsum_elim_compute ⬝ _,
refine ap (λγ, (h i a) * γ) !dirsum_elim_compute ⬝ _,
refine ap (λγ, γ * group_fun (h (succ i)) (f i a)⁻¹) !k ⬝ _,
refine ap (λγ, group_fun (h (succ i)) (f i a) * γ) (!to_respect_inv) ⬝ _,
@ -35,6 +37,36 @@ namespace group
(k : Πi a, h i a = h (succ i) (f i a)) : seq_colim →g A' :=
gqg_elim _ (dirsum_elim h) (seq_colim_quotient h k)
definition seq_colim_compute (h : Πi, A i →g A')
(k : Πi a, h i a = h (succ i) (f i a)) (i : ) (a : A i) :
(seq_colim_elim h k) (seq_colim_incl i a) = h i a :=
begin
refine gqg_elim_compute (λa, ∥seq_colim_rel a∥) (dirsum_elim h) (seq_colim_quotient h k) (dirsum_incl A i a) ⬝ _,
exact !dirsum_elim_compute
end
definition seq_colim_glue {i : @trunctype.mk 0 _} {a : A i} : seq_colim_incl i a = seq_colim_incl (succ i) (f i a) :=
begin
refine !grp_comp_comp ⬝ _,
refine gqg_eq_of_rel _ _ ⬝ (!grp_comp_comp)⁻¹,
exact tr (seq_colim_rel.rmk _ _)
end
section
local abbreviation h (m : seq_colim →g A') : Πi, A i →g A' := λi, m ∘g (seq_colim_incl i)
local abbreviation k (m : seq_colim →g A') : Πi a, h m i a = h m (succ i) (f i a) :=
λ i a, !grp_comp_comp ⬝ ap m (@seq_colim_glue i a) ⬝ !grp_comp_comp⁻¹
definition seq_colim_unique (m : seq_colim →g A') :
Πv, seq_colim_elim (h m) (k m) v = m v :=
begin
intro v, refine (gqg_elim_unique _ (dirsum_elim (h m)) _ m _ _)⁻¹ ⬝ _,
apply dirsum_elim_unique, rotate 1, reflexivity,
intro i a, reflexivity
end
end
end
end group

View file

@ -187,6 +187,11 @@ namespace group
... = a * (c * (b * d)) : by exact ap (λ bcd, a * bcd) (mul.assoc c b d)
... = (a * c) * (b * d) : by exact (mul.assoc a c (b * d))⁻¹
definition grp_comp_comp {G H K : Group} (g : H →g K) (f : G →g H) (x : G) : (g ∘g f) x = g (f x) :=
begin
reflexivity
end
end group open group
namespace function