finished some lemma
This commit is contained in:
parent
4ea75446ba
commit
8d586d587b
2 changed files with 14 additions and 11 deletions
|
@ -142,21 +142,19 @@ namespace group
|
||||||
definition qg_map [constructor] : G →g quotient_group N :=
|
definition qg_map [constructor] : G →g quotient_group N :=
|
||||||
homomorphism.mk class_of (λ g h, idp)
|
homomorphism.mk class_of (λ g h, idp)
|
||||||
|
|
||||||
definition ab_gq_map {G : AbGroup} (N : subgroup_rel G) : G →g quotient_ab_group N :=
|
definition ab_qg_map {G : AbGroup} (N : subgroup_rel G) : G →g quotient_ab_group N :=
|
||||||
begin
|
begin
|
||||||
fapply homomorphism.mk,
|
fapply homomorphism.mk,
|
||||||
exact class_of,
|
exact class_of,
|
||||||
exact λ g h, idp
|
exact λ g h, idp
|
||||||
end
|
end
|
||||||
|
|
||||||
definition surjective_ab_gq_map {A : AbGroup} (N : subgroup_rel A) : is_surjective (ab_gq_map N) :=
|
definition surjective_ab_qg_map {A : AbGroup} (N : subgroup_rel A) : is_surjective (ab_qg_map N) :=
|
||||||
begin
|
begin
|
||||||
intro x,
|
intro x, induction x,
|
||||||
induction x,
|
|
||||||
fapply image.mk,
|
fapply image.mk,
|
||||||
exact a,
|
exact a, reflexivity,
|
||||||
reflexivity,
|
apply is_prop.elimo
|
||||||
sorry --Floris please help
|
|
||||||
end
|
end
|
||||||
|
|
||||||
namespace quotient
|
namespace quotient
|
||||||
|
@ -176,7 +174,7 @@ namespace group
|
||||||
unfold quotient_rel, rewrite e, exact H
|
unfold quotient_rel, rewrite e, exact H
|
||||||
end
|
end
|
||||||
|
|
||||||
definition ab_gq_map_eq_one {K : subgroup_rel A} (g :A) (H : K g) : ab_gq_map K g = 1 :=
|
definition ab_qg_map_eq_one {K : subgroup_rel A} (g :A) (H : K g) : ab_qg_map K g = 1 :=
|
||||||
begin
|
begin
|
||||||
apply eq_of_rel,
|
apply eq_of_rel,
|
||||||
have e : (g * 1⁻¹ = g),
|
have e : (g * 1⁻¹ = g),
|
||||||
|
@ -257,7 +255,7 @@ definition kernel_quotient_extension {A B : AbGroup} (f : A →g B) : quotient_a
|
||||||
end
|
end
|
||||||
|
|
||||||
definition kernel_quotient_extension_triangle {A B : AbGroup} (f : A →g B) :
|
definition kernel_quotient_extension_triangle {A B : AbGroup} (f : A →g B) :
|
||||||
kernel_quotient_extension f ∘g ab_gq_map (kernel_subgroup f) ~ f :=
|
kernel_quotient_extension f ∘g ab_qg_map (kernel_subgroup f) ~ f :=
|
||||||
begin
|
begin
|
||||||
intro a,
|
intro a,
|
||||||
apply quotient_group_compute
|
apply quotient_group_compute
|
||||||
|
@ -273,10 +271,10 @@ definition ab_group_quotient_homomorphism (A B : AbGroup)(K : subgroup_rel A)(L
|
||||||
(p : Π(a:A), K(a) → L(f a)) : quotient_ab_group K →g quotient_ab_group L :=
|
(p : Π(a:A), K(a) → L(f a)) : quotient_ab_group K →g quotient_ab_group L :=
|
||||||
begin
|
begin
|
||||||
fapply quotient_group_elim,
|
fapply quotient_group_elim,
|
||||||
exact (ab_gq_map L) ∘g f,
|
exact (ab_qg_map L) ∘g f,
|
||||||
intro a,
|
intro a,
|
||||||
intro k,
|
intro k,
|
||||||
exact @ab_gq_map_eq_one B L (f a) (p a k),
|
exact @ab_qg_map_eq_one B L (f a) (p a k),
|
||||||
end
|
end
|
||||||
|
|
||||||
definition ab_group_kernel_factor {A B C: AbGroup} (f : A →g B)(g : A →g C){i : C →g B}(H : f = i ∘g g )
|
definition ab_group_kernel_factor {A B C: AbGroup} (f : A →g B)(g : A →g C){i : C →g B}(H : f = i ∘g g )
|
||||||
|
|
|
@ -130,3 +130,8 @@ namespace sphere
|
||||||
-- end
|
-- end
|
||||||
|
|
||||||
end sphere
|
end sphere
|
||||||
|
|
||||||
|
definition image_pathover {A B : Type} (f : A → B) {x y : B} (p : x = y) (u : image f x) (v : image f y) : u =[p] v :=
|
||||||
|
begin
|
||||||
|
apply is_prop.elimo
|
||||||
|
end
|
||||||
|
|
Loading…
Reference in a new issue