dependent spectrum over X_+

This commit is contained in:
Floris van Doorn 2017-07-03 13:37:02 +01:00
parent 63ec1b8d37
commit a34a639e80
3 changed files with 47 additions and 6 deletions

View file

@ -142,8 +142,33 @@ section atiyah_hirzebruch
apply ptrunc_pequiv, exact is_strunc_spi s₀ Y H k,
end
--{X : Type*} (Y : X → spectrum) (s₀ : ) (H : Πx, is_strunc s₀ (Y x))
end atiyah_hirzebruch
section unreduced_atiyah_hirzebruch
open option
definition unreduced_atiyah_hirzebruch_convergence {X : Type} (Y : X → spectrum) (s₀ : )
(H : Πx, is_strunc s₀ (Y x)) :
(λn s, uopH^-n[(x : X), πₛ[s] (Y x)]) ⟹ᵍ (λn, upH^-n[(x : X), Y x]) :=
converges_to_g_isomorphism
(@atiyah_hirzebruch_convergence X₊ (add_point_spectrum Y) s₀ (is_strunc_add_point_spectrum H))
begin
intro n s, exact sorry
-- refine _ ⬝g (parametrized_cohomology_isomorphism_shomotopy_group_spi _ idp)⁻¹ᵍ,
-- apply shomotopy_group_isomorphism_of_pequiv, intro k,
-- refine pfiber_postnikov_smap (spi X Y) s k ⬝e* _,
-- apply spi_EM_spectrum
end
begin
intro n, exact sorry
-- refine _ ⬝g (parametrized_cohomology_isomorphism_shomotopy_group_spi _ idp)⁻¹ᵍ,
-- apply shomotopy_group_isomorphism_of_pequiv, intro k,
-- apply ptrunc_pequiv, exact is_strunc_spi s₀ Y H k,
end
end unreduced_atiyah_hirzebruch
section serre
variables {X : Type} (F : X → Type) (Y : spectrum) (s₀ : ) (H : is_strunc s₀ Y)
@ -156,17 +181,17 @@ section serre
/- NOTE: we need unreduced cohomology, maybe also define aityah_hirzebruch for unreduced cohomology -/
include H
definition serre_convergence :
(λn s, opH^-n[(x : X₊), H^-s[F₊ₒ x, Y]]) ⟹ᵍ (λn, H^-n[(Σ(x : X), F x)₊, Y]) :=
-- (λn s, uopH^-n[(x : X), uH^-s[F x, Y]]) ⟹ᵍ (λn, uH^-n[Σ(x : X), F x, Y]) :=
(λn s, uopH^-n[(x : X), uH^-s[F x, Y]]) ⟹ᵍ (λn, uH^-n[Σ(x : X), F x, Y]) :=
proof
converges_to_g_isomorphism
(atiyah_hirzebruch_convergence (λx, sp_cotensor (F₊ₒ x) Y) s₀
(λx, is_strunc_sp_cotensor s₀ (F₊ₒ x) H))
begin
intro n s,
apply ordinary_parametrized_cohomology_isomorphism_right,
intro x,
exact (cohomology_isomorphism_shomotopy_group_sp_cotensor _ _ idp)⁻¹ᵍ,
exact sorry
-- intro n s,
-- apply ordinary_parametrized_cohomology_isomorphism_right,
-- intro x,
-- exact (cohomology_isomorphism_shomotopy_group_sp_cotensor _ _ idp)⁻¹ᵍ,
end
begin
intro n, exact sorry

View file

@ -345,6 +345,11 @@ namespace spectrum
definition sunit.{u} [constructor] : spectrum.{u} :=
spectrum.MK (λn, plift punit) (λn, pequiv_of_is_contr _ _ _ _)
open option
definition add_point_spectrum {X : Type} (Y : X → spectrum) : X₊ → spectrum
| (some x) := Y x
| none := sunit
/---------------------
Homotopy groups
---------------------/

View file

@ -173,6 +173,17 @@ definition strunc_functor [constructor] (k : ) {E F : spectrum} (f : E →ₛ
strunc k E →ₛ strunc k F :=
strunc_elim (str k F ∘ₛ f) (is_strunc_strunc k F)
definition is_strunc_sunit (n : ) : is_strunc n sunit :=
begin
intro k, apply is_trunc_lift, apply is_trunc_unit
end
open option
definition is_strunc_add_point_spectrum {X : Type} {Y : X → spectrum} {s₀ : }
(H : Πx, is_strunc s₀ (Y x)) : Π(x : X₊), is_strunc s₀ (add_point_spectrum Y x)
| (some x) := H x
| none := is_strunc_sunit s₀
definition is_strunc_EM_spectrum (G : AbGroup)
: is_strunc 0 (EM_spectrum G) :=
begin