applications: prove almost completely that S^3 and S^2 have the same high enough homotopy groups
There is one missing fact, which is that the equivalence between S^1 and the fiber of the hopf fibration respects the basepoint
This commit is contained in:
parent
9a476fecfe
commit
a716ef2108
2 changed files with 239 additions and 15 deletions
|
@ -5,8 +5,9 @@ Authors: Floris van Doorn
|
|||
-/
|
||||
|
||||
import .LES_of_homotopy_groups homotopy.connectedness homotopy.homotopy_group homotopy.join
|
||||
open eq is_trunc pointed is_conn is_equiv fiber equiv trunc nat chain_complex prod fin algebra
|
||||
group trunc_index function join pushout
|
||||
homotopy.complex_hopf
|
||||
open eq is_trunc pointed is_conn is_equiv fiber equiv trunc nat chain_complex fin algebra
|
||||
group trunc_index function join pushout prod sigma sigma.ops
|
||||
|
||||
namespace nat
|
||||
open sigma sum
|
||||
|
@ -69,17 +70,132 @@ namespace is_conn
|
|||
: square (ap f p) (ap g q) (h a b) (h a' b') :=
|
||||
by induction p; induction q; exact hrfl
|
||||
|
||||
-- TODO: move
|
||||
section
|
||||
open sphere sphere_index
|
||||
end is_conn
|
||||
|
||||
definition add_plus_one_minus_one (n : ℕ₋₁) : n +1+ -1 = n := idp
|
||||
definition add_plus_one_succ (n m : ℕ₋₁) : n +1+ (m.+1) = (n +1+ m).+1 := idp
|
||||
definition minus_one_add_plus_one (n : ℕ₋₁) : -1 +1+ n = n :=
|
||||
begin induction n with n IH, reflexivity, exact ap succ IH end
|
||||
definition succ_add_plus_one (n m : ℕ₋₁) : (n.+1) +1+ m = (n +1+ m).+1 :=
|
||||
begin induction m with m IH, reflexivity, exact ap succ IH end
|
||||
namespace sigma
|
||||
definition ppr1 {A : Type*} {B : A → Type*} : (Σ*(x : A), B x) →* A :=
|
||||
pmap.mk pr1 idp
|
||||
|
||||
definition ppr2 {A : Type*} (B : A → Type*) (v : (Σ*(x : A), B x)) : B (ppr1 v) :=
|
||||
pr2 v
|
||||
end sigma
|
||||
|
||||
namespace hopf
|
||||
|
||||
open sphere.ops susp circle sphere_index
|
||||
|
||||
-- definition complex_phopf : S. 3 →* S. 2 :=
|
||||
-- proof pmap.mk complex_hopf idp qed
|
||||
|
||||
-- variable (A : Type)
|
||||
-- variables [h_space A] [is_conn 0 A]
|
||||
|
||||
attribute hopf [unfold 4]
|
||||
-- definition phopf (x : psusp A) : Type* :=
|
||||
-- pointed.MK (hopf A x)
|
||||
-- begin
|
||||
-- induction x with a: esimp,
|
||||
-- do 2 exact 1,
|
||||
-- apply pathover_of_tr_eq, rewrite [↑hopf, elim_type_merid, ▸*, mul_one],
|
||||
-- end
|
||||
|
||||
-- maybe define this as a composition of pointed maps?
|
||||
definition complex_phopf [constructor] : S. 3 →* S. 2 :=
|
||||
proof pmap.mk complex_hopf idp qed
|
||||
|
||||
definition fiber_pr1_fun {A : Type} {B : A → Type} {a : A} (b : B a)
|
||||
: fiber_pr1 B a (fiber.mk ⟨a, b⟩ idp) = b :=
|
||||
idp
|
||||
|
||||
--TODO: in fiber.equiv_precompose, make f explicit
|
||||
open sphere sphere.ops
|
||||
|
||||
definition add_plus_one_of_nat (n m : ℕ) : (n +1+ m) = sphere_index.of_nat (n + m + 1) :=
|
||||
begin
|
||||
induction m with m IH,
|
||||
{ reflexivity },
|
||||
{ exact ap succ IH}
|
||||
end
|
||||
|
||||
end is_conn
|
||||
-- definition pjoin_pspheres (n m : ℕ) : join (S. n) (S. m) ≃ (S. (n + m + 1)) :=
|
||||
-- join.spheres n m ⬝e begin esimp, apply equiv_of_eq, apply ap S, apply add_plus_one_of_nat end
|
||||
|
||||
-- set_option pp.all true
|
||||
-- definition pjoin_spheres_inv_base (n m : ℕ)
|
||||
-- : (join.spheres 1 1)⁻¹ (cast proof idp qed (@sphere.base 3)) = inl base :=
|
||||
-- begin
|
||||
-- exact sorry
|
||||
-- end
|
||||
|
||||
|
||||
definition pfiber_complex_phopf : pfiber complex_phopf ≃* S. 1 :=
|
||||
begin
|
||||
fapply pequiv_of_equiv,
|
||||
{ esimp, unfold [complex_hopf],
|
||||
refine @fiber.equiv_precompose _ _ (sigma.pr1 ∘ (hopf.total S¹)⁻¹ᵉ) _ _
|
||||
(join.spheres 1 1)⁻¹ᵉ _ ⬝e _,
|
||||
refine fiber.equiv_precompose (hopf.total S¹)⁻¹ᵉ ⬝e _,
|
||||
apply fiber_pr1},
|
||||
{ exact sorry}
|
||||
end
|
||||
|
||||
open int
|
||||
|
||||
definition one_le_succ (n : ℕ) : 1 ≤ succ n :=
|
||||
nat.succ_le_succ !zero_le
|
||||
|
||||
definition π2S2 : πg[1+1] (S. 2) = gℤ :=
|
||||
begin
|
||||
refine _ ⬝ fundamental_group_of_circle,
|
||||
refine _ ⬝ ap (λx, π₁ x) (eq_of_pequiv pfiber_complex_phopf),
|
||||
fapply Group_eq,
|
||||
{ fapply equiv.mk,
|
||||
{ exact cc_to_fn (LES_of_homotopy_groups complex_phopf) (1, 2)},
|
||||
{ refine @is_equiv_of_trivial _
|
||||
_ _
|
||||
(is_exact_LES_of_homotopy_groups _ (1, 1))
|
||||
(is_exact_LES_of_homotopy_groups _ (1, 2))
|
||||
_
|
||||
_
|
||||
(@pgroup_of_group _ (group_LES_of_homotopy_groups complex_phopf _ _) idp)
|
||||
(@pgroup_of_group _ (group_LES_of_homotopy_groups complex_phopf _ _) idp)
|
||||
_,
|
||||
{ rewrite [LES_of_homotopy_groups_1, ▸*],
|
||||
have H : 1 ≤[ℕ] 2, from !one_le_succ,
|
||||
apply trivial_homotopy_group_of_is_conn, exact H, rexact is_conn_psphere 3},
|
||||
{ refine tr_rev (λx, is_contr (ptrunctype._trans_of_to_pType x))
|
||||
(LES_of_homotopy_groups_1 complex_phopf 2) _,
|
||||
apply trivial_homotopy_group_of_is_conn, apply le.refl, rexact is_conn_psphere 3},
|
||||
{ exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (0, 2))}}},
|
||||
{ exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (0, 2))}
|
||||
end
|
||||
|
||||
open circle
|
||||
definition πnS3_eq_πnS2 (n : ℕ) : πg[n+2 +1] (S. 3) = πg[n+2 +1] (S. 2) :=
|
||||
begin
|
||||
fapply Group_eq,
|
||||
{ fapply equiv.mk,
|
||||
{ exact cc_to_fn (LES_of_homotopy_groups complex_phopf) (n+3, 0)},
|
||||
{ have H : is_trunc 1 (pfiber complex_phopf),
|
||||
from @(is_trunc_equiv_closed_rev _ pfiber_complex_phopf) is_trunc_circle,
|
||||
refine @is_equiv_of_trivial _
|
||||
_ _
|
||||
(is_exact_LES_of_homotopy_groups _ (n+2, 2))
|
||||
(is_exact_LES_of_homotopy_groups _ (n+3, 0))
|
||||
_
|
||||
_
|
||||
(@pgroup_of_group _ (group_LES_of_homotopy_groups complex_phopf _ _) idp)
|
||||
(@pgroup_of_group _ (group_LES_of_homotopy_groups complex_phopf _ _) idp)
|
||||
_,
|
||||
{ rewrite [▸*, LES_of_homotopy_groups_2 _ (n +[ℕ] 2)],
|
||||
have H : 1 ≤[ℕ] n + 1, from !one_le_succ,
|
||||
apply trivial_homotopy_group_of_is_trunc _ _ _ H},
|
||||
{ refine tr_rev (λx, is_contr (ptrunctype._trans_of_to_pType x))
|
||||
(LES_of_homotopy_groups_2 complex_phopf _) _,
|
||||
have H : 1 ≤[ℕ] n + 2, from !one_le_succ,
|
||||
apply trivial_homotopy_group_of_is_trunc _ _ _ H},
|
||||
{ exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (n+2, 0))}}},
|
||||
{ exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (n+2, 0))}
|
||||
end
|
||||
|
||||
end hopf
|
||||
|
|
|
@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Authors: Floris van Doorn
|
||||
-/
|
||||
|
||||
import homotopy.wedge algebra.homotopy_group homotopy.sphere types.nat
|
||||
import homotopy.wedge homotopy.homotopy_group homotopy.circle .LES_applications
|
||||
|
||||
open eq is_conn is_trunc pointed susp nat pi equiv is_equiv trunc fiber trunc_index
|
||||
|
||||
|
@ -295,9 +295,9 @@ namespace sphere
|
|||
pcast (phomotopy_group_succ_in2 A (succ n)) g * pcast (phomotopy_group_succ_in2 A (succ n)) h :=
|
||||
begin
|
||||
induction g with p, induction h with q, esimp,
|
||||
rewrite [-+tr_eq_cast_ap, ↑phomotopy_group_succ_in2, -+tr_compose],
|
||||
rewrite [-+ tr_eq_cast_ap, ↑phomotopy_group_succ_in2, -+ tr_compose],
|
||||
refine ap (transport _ _) !tr_mul_tr ⬝ _,
|
||||
rewrite [+trunc_transport],
|
||||
rewrite [+ trunc_transport],
|
||||
apply ap tr, apply loop_space_succ_eq_in_concat,
|
||||
end
|
||||
|
||||
|
@ -314,4 +314,112 @@ namespace sphere
|
|||
}
|
||||
end
|
||||
|
||||
theorem mul_two {A : Type} [semiring A] (a : A) : a * 2 = a + a :=
|
||||
by rewrite [-one_add_one_eq_two, left_distrib, +mul_one]
|
||||
|
||||
theorem two_mul {A : Type} [semiring A] (a : A) : 2 * a = a + a :=
|
||||
by rewrite [-one_add_one_eq_two, right_distrib, +one_mul]
|
||||
|
||||
definition two_le_succ_succ (n : ℕ) : 2 ≤ succ (succ n) :=
|
||||
nat.succ_le_succ (nat.succ_le_succ !zero_le)
|
||||
|
||||
open int circle hopf
|
||||
definition πnSn (n : ℕ) : πg[n+1] (S. (succ n)) = gℤ :=
|
||||
begin
|
||||
cases n with n IH,
|
||||
{ exact fundamental_group_of_circle},
|
||||
{ induction n with n IH,
|
||||
{ exact π2S2},
|
||||
{ refine _ ⬝ IH, apply stability_eq,
|
||||
calc
|
||||
succ n + 3 = succ (succ n) + 2 : !succ_add⁻¹
|
||||
... ≤ succ (succ n) + (succ (succ n)) : add_le_add_left !two_le_succ_succ
|
||||
... = 2 * (succ (succ n)) : !two_mul⁻¹ }}
|
||||
end
|
||||
|
||||
|
||||
attribute group_integers [constructor]
|
||||
theorem not_is_trunc_sphere (n : ℕ) : ¬is_trunc n (S. (succ n)) :=
|
||||
begin
|
||||
intro H,
|
||||
note H2 := trivial_homotopy_group_of_is_trunc (S. (succ n)) n n !le.refl,
|
||||
rewrite [πnSn at H2, ▸* at H2],
|
||||
have H3 : (0 : ℤ) ≠ (1 : ℤ), from dec_star,
|
||||
apply H3,
|
||||
apply is_prop.elim,
|
||||
end
|
||||
|
||||
definition transport11 {A B : Type} (P : A → B → Type) {a a' : A} {b b' : B}
|
||||
(p : a = a') (q : b = b') (z : P a b) : P a' b' :=
|
||||
transport (P a') q (p ▸ z)
|
||||
|
||||
section
|
||||
open sphere_index
|
||||
|
||||
definition add_plus_one_minus_one (n : ℕ₋₁) : n +1+ -1 = n := idp
|
||||
definition add_plus_one_succ (n m : ℕ₋₁) : n +1+ (m.+1) = (n +1+ m).+1 := idp
|
||||
definition minus_one_add_plus_one (n : ℕ₋₁) : -1 +1+ n = n :=
|
||||
begin induction n with n IH, reflexivity, exact ap succ IH end
|
||||
definition succ_add_plus_one (n m : ℕ₋₁) : (n.+1) +1+ m = (n +1+ m).+1 :=
|
||||
begin induction m with m IH, reflexivity, exact ap succ IH end
|
||||
|
||||
definition nat_of_sphere_index : ℕ₋₁ → ℕ :=
|
||||
sphere_index.rec 0 (λx, succ)
|
||||
|
||||
definition trunc_index_of_nat_of_sphere_index (n : ℕ₋₁)
|
||||
: trunc_index.of_nat (nat_of_sphere_index n) = (of_sphere_index n).+1 :=
|
||||
begin
|
||||
induction n with n IH,
|
||||
{ reflexivity},
|
||||
{ exact ap succ IH}
|
||||
end
|
||||
|
||||
definition sphere_index_of_nat_of_sphere_index (n : ℕ₋₁)
|
||||
: sphere_index.of_nat (nat_of_sphere_index n) = n.+1 :=
|
||||
begin
|
||||
induction n with n IH,
|
||||
{ reflexivity},
|
||||
{ exact ap succ IH}
|
||||
end
|
||||
|
||||
definition of_sphere_index_succ (n : ℕ₋₁)
|
||||
: of_sphere_index (n.+1) = (of_sphere_index n).+1 :=
|
||||
begin
|
||||
induction n with n IH,
|
||||
{ reflexivity},
|
||||
{ exact ap succ IH}
|
||||
end
|
||||
|
||||
definition sphere_index.of_nat_succ (n : ℕ)
|
||||
: sphere_index.of_nat (succ n) = (sphere_index.of_nat n).+1 :=
|
||||
begin
|
||||
induction n with n IH,
|
||||
{ reflexivity},
|
||||
{ exact ap succ IH}
|
||||
end
|
||||
|
||||
definition nat_of_sphere_index_succ (n : ℕ₋₁)
|
||||
: nat_of_sphere_index (n.+1) = succ (nat_of_sphere_index n) :=
|
||||
begin
|
||||
induction n with n IH,
|
||||
{ reflexivity},
|
||||
{ exact ap succ IH}
|
||||
end
|
||||
|
||||
definition not_is_trunc_sphere' (n : ℕ₋₁) : ¬is_trunc n (S (n.+1)) :=
|
||||
begin
|
||||
cases n with n,
|
||||
{ esimp [sphere.ops.S, sphere], intro H,
|
||||
have H2 : is_prop bool, from @(is_trunc_equiv_closed -1 sphere_equiv_bool) H,
|
||||
have H3 : bool.tt ≠ bool.ff, from dec_star, apply H3, apply is_prop.elim},
|
||||
{ intro H, apply not_is_trunc_sphere (nat_of_sphere_index n),
|
||||
rewrite [▸*, trunc_index_of_nat_of_sphere_index, -nat_of_sphere_index_succ,
|
||||
sphere_index_of_nat_of_sphere_index],
|
||||
exact H}
|
||||
end
|
||||
end
|
||||
|
||||
definition π3S2 : πg[2+1] (S. 2) = gℤ :=
|
||||
(πnS3_eq_πnS2 0)⁻¹ ⬝ πnSn 2
|
||||
|
||||
end sphere
|
||||
|
|
Loading…
Reference in a new issue