prove that the join of two spheres is a sphere

This commit is contained in:
Floris van Doorn 2016-03-03 12:48:31 -05:00
parent 22e75da53e
commit a76e4fce08

View file

@ -1,6 +1,6 @@
import .LES_of_homotopy_groups homotopy.connectedness homotopy.homotopy_group
import .LES_of_homotopy_groups homotopy.connectedness homotopy.homotopy_group homotopy.join
open eq is_trunc pointed homotopy is_equiv fiber equiv trunc nat chain_complex prod fin algebra
group trunc_index function
group trunc_index function join pushout
namespace nat
open sigma sum
definition eq_even_or_eq_odd (n : ) : (Σk, 2 * k = n) ⊎ (Σk, 2 * k + 1 = n) :=
@ -66,9 +66,17 @@ namespace is_conn
theorem is_equiv_trunc_functor_of_is_conn_map {A B : Type} (n : ℕ₋₂) (f : A → B)
[H : is_conn_map n f] : is_equiv (trunc_functor n f) :=
begin
exact sorry
fapply adjointify,
{ intro b, induction b with b, exact trunc_functor n point (center (trunc n (fiber f b)))},
{ intro b, induction b with b, esimp, generalize center (trunc n (fiber f b)), intro v,
induction v with v, induction v with a p, esimp, exact ap tr p},
{ intro a, induction a with a, esimp, rewrite [center_eq (tr (fiber.mk a idp))]}
end
theorem trunc_equiv_trunc_of_is_conn_map {A B : Type} (n : ℕ₋₂) (f : A → B)
[H : is_conn_map n f] : trunc n A ≃ trunc n B :=
equiv.mk (trunc_functor n f) (is_equiv_trunc_functor_of_is_conn_map n f)
definition is_equiv_tinverse [constructor] (A : Type*) : is_equiv (@tinverse A) :=
by apply @is_equiv_trunc_functor; apply is_equiv_eq_inverse
@ -130,4 +138,86 @@ namespace is_conn
(@is_contr_HG_fiber_of_is_connected A B (2 * k + 1) (2 * k + 1) f H !le.refl)}
end
definition join_empty_right [constructor] (A : Type) : join A empty ≃ A :=
begin
fapply equiv.MK,
{ intro x, induction x with a o v,
{ exact a},
{ exact empty.elim o},
{ exact empty.elim (pr2 v)}},
{ exact pushout.inl},
{ intro a, reflexivity},
{ intro x, induction x with a o v,
{ reflexivity},
{ exact empty.elim o},
{ exact empty.elim (pr2 v)}}
end
/- joins -/
definition join_functor [unfold 7] {A A' B B' : Type} (f : A → A') (g : B → B') :
join A B → join A' B' :=
begin
intro x, induction x with a b v,
{ exact inl (f a)},
{ exact inr (g b)},
{ exact glue (f (pr1 v), g (pr2 v))}
end
theorem join_functor_glue {A A' B B' : Type} (f : A → A') (g : B → B')
(v : A × B) : ap (join_functor f g) (glue v) = glue (f (pr1 v), g (pr2 v)) :=
!elim_glue
definition natural_square2 {A B X : Type} {f : A → X} {g : B → X} (h : Πa b, f a = g b)
{a a' : A} {b b' : B} (p : a = a') (q : b = b')
: square (ap f p) (ap g q) (h a b) (h a' b') :=
by induction p; induction q; exact hrfl
definition join_equiv_join {A A' B B' : Type} (f : A ≃ A') (g : B ≃ B') :
join A B ≃ join A' B' :=
begin
fapply equiv.MK,
{ apply join_functor f g},
{ apply join_functor f⁻¹ g⁻¹},
{ intro x', induction x' with a' b' v',
{ esimp, exact ap inl (right_inv f a')},
{ esimp, exact ap inr (right_inv g b')},
{ cases v' with a' b', apply eq_pathover,
rewrite [▸*, ap_id, ap_compose' (join_functor _ _), ▸*],
xrewrite [+join_functor_glue, ▸*],
exact natural_square2 jglue (right_inv f a') (right_inv g b')}},
{ intro x, induction x with a b v,
{ esimp, exact ap inl (left_inv f a)},
{ esimp, exact ap inr (left_inv g b)},
{ cases v with a b, apply eq_pathover,
rewrite [▸*, ap_id, ap_compose' (join_functor _ _), ▸*],
xrewrite [+join_functor_glue, ▸*],
exact natural_square2 jglue (left_inv f a) (left_inv g b)}}
end
section
open sphere sphere_index
definition add_plus_one_minus_one (n : ℕ₋₁) : n +1+ -1 = n := idp
definition add_plus_one_succ (n m : ℕ₋₁) : n +1+ (m.+1) = (n +1+ m).+1 := idp
definition minus_one_add_plus_one (n : ℕ₋₁) : -1 +1+ n = n :=
begin induction n with n IH, reflexivity, exact ap succ IH end
definition succ_add_plus_one (n m : ℕ₋₁) : (n.+1) +1+ m = (n +1+ m).+1 :=
begin induction m with m IH, reflexivity, exact ap succ IH end
definition sphere_join_sphere (n m : ℕ₋₁) : join (sphere n) (sphere m) ≃ sphere (n +1+ m) :=
begin
revert n, induction m with m IH: intro n,
{ apply join_empty_right},
{ rewrite [sphere_succ m],
refine join_equiv_join erfl !join.bool⁻¹ᵉ ⬝e _,
refine !join.assoc⁻¹ᵉ ⬝e _,
refine join_equiv_join !join.symm erfl ⬝e _,
refine join_equiv_join !join.bool erfl ⬝e _,
rewrite [-sphere_succ n],
refine !IH ⬝e _,
rewrite [add_plus_one_succ, succ_add_plus_one]}
end
end
end is_conn