Add homology_ordinary_theory and copyright statement.
This commit is contained in:
parent
5b384882f8
commit
a8592e0184
1 changed files with 11 additions and 0 deletions
|
@ -1,3 +1,11 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2017 Yuri Sulyma, Favonia
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Yuri Sulyma, Favonia
|
||||||
|
|
||||||
|
Reduced homology theories
|
||||||
|
-/
|
||||||
|
|
||||||
import ..homotopy.spectrum ..homotopy.EM ..algebra.arrow_group ..algebra.direct_sum ..homotopy.fwedge ..choice ..homotopy.pushout ..move_to_lib
|
import ..homotopy.spectrum ..homotopy.EM ..algebra.arrow_group ..algebra.direct_sum ..homotopy.fwedge ..choice ..homotopy.pushout ..move_to_lib
|
||||||
|
|
||||||
open eq spectrum int pointed group algebra sphere nat equiv susp is_trunc
|
open eq spectrum int pointed group algebra sphere nat equiv susp is_trunc
|
||||||
|
@ -20,6 +28,9 @@ namespace homology
|
||||||
(Hadditive : Π(n : ℤ) {I : Set.{u}} (X : I → Type*), is_equiv
|
(Hadditive : Π(n : ℤ) {I : Set.{u}} (X : I → Type*), is_equiv
|
||||||
(dirsum_elim (λi, Hh n (pinl i)) : dirsum (λi, HH n (X i)) → HH n (⋁ X)))
|
(dirsum_elim (λi, Hh n (pinl i)) : dirsum (λi, HH n (X i)) → HH n (⋁ X)))
|
||||||
|
|
||||||
|
structure ordinary_homology_theory.{u} extends homology_theory.{u} : Type.{u+1} :=
|
||||||
|
(Hdimension : Π(n : ℤ), n ≠ 0 → is_contr (HH n (plift (psphere 0))))
|
||||||
|
|
||||||
section
|
section
|
||||||
parameter (theory : homology_theory)
|
parameter (theory : homology_theory)
|
||||||
open homology_theory
|
open homology_theory
|
||||||
|
|
Loading…
Reference in a new issue