84 lines
4.3 KiB
Text
84 lines
4.3 KiB
Text
/-
|
||
Copyright (c) 2017 Yuri Sulyma, Favonia
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Yuri Sulyma, Favonia
|
||
|
||
Reduced homology theories
|
||
-/
|
||
|
||
import ..homotopy.spectrum ..homotopy.EM ..algebra.arrow_group ..algebra.direct_sum ..homotopy.fwedge ..choice ..homotopy.pushout ..move_to_lib
|
||
|
||
open eq spectrum int pointed group algebra sphere nat equiv susp is_trunc
|
||
function fwedge cofiber lift is_equiv choice algebra pi smash
|
||
|
||
namespace homology
|
||
|
||
/- homology theory -/
|
||
|
||
structure homology_theory.{u} : Type.{u+1} :=
|
||
(HH : ℤ → pType.{u} → AbGroup.{u})
|
||
(Hh : Π(n : ℤ) {X Y : Type*} (f : X →* Y), HH n X →g HH n Y)
|
||
(Hid : Π(n : ℤ) {X : Type*} (x : HH n X), Hh n (pid X) x = x)
|
||
(Hcompose : Π(n : ℤ) {X Y Z : Type*} (f : Y →* Z) (g : X →* Y),
|
||
Hh n (f ∘* g) ~ Hh n f ∘ Hh n g)
|
||
(Hsusp : Π(n : ℤ) (X : Type*), HH (succ n) (psusp X) ≃g HH n X)
|
||
(Hsusp_natural : Π(n : ℤ) {X Y : Type*} (f : X →* Y),
|
||
Hsusp n Y ∘ Hh (succ n) (psusp_functor f) ~ Hh n f ∘ Hsusp n X)
|
||
(Hexact : Π(n : ℤ) {X Y : Type*} (f : X →* Y), is_exact_g (Hh n f) (Hh n (pcod f)))
|
||
(Hadditive : Π(n : ℤ) {I : Set.{u}} (X : I → Type*), is_equiv
|
||
(dirsum_elim (λi, Hh n (pinl i)) : dirsum (λi, HH n (X i)) → HH n (⋁ X)))
|
||
|
||
structure ordinary_homology_theory.{u} extends homology_theory.{u} : Type.{u+1} :=
|
||
(Hdimension : Π(n : ℤ), n ≠ 0 → is_contr (HH n (plift (psphere 0))))
|
||
|
||
section
|
||
parameter (theory : homology_theory)
|
||
open homology_theory
|
||
|
||
theorem HH_base_indep (n : ℤ) {A : Type} (a b : A)
|
||
: HH theory n (pType.mk A a) ≃g HH theory n (pType.mk A b) :=
|
||
calc HH theory n (pType.mk A a) ≃g HH theory (int.succ n) (psusp A) : by exact (Hsusp theory n (pType.mk A a)) ⁻¹ᵍ
|
||
... ≃g HH theory n (pType.mk A b) : by exact Hsusp theory n (pType.mk A b)
|
||
|
||
theorem Hh_homotopy' (n : ℤ) {A B : Type*} (f : A → B) (p q : f pt = pt)
|
||
: Hh theory n (pmap.mk f p) ~ Hh theory n (pmap.mk f q) := λ x,
|
||
calc Hh theory n (pmap.mk f p) x
|
||
= Hh theory n (pmap.mk f p) (Hsusp theory n A ((Hsusp theory n A)⁻¹ᵍ x))
|
||
: by exact ap (Hh theory n (pmap.mk f p)) (equiv.to_right_inv (equiv_of_isomorphism (Hsusp theory n A)) x)⁻¹
|
||
... = Hsusp theory n B (Hh theory (succ n) (pmap.mk (susp.functor f) !refl) ((Hsusp theory n A)⁻¹ x))
|
||
: by exact (Hsusp_natural theory n (pmap.mk f p) ((Hsusp theory n A)⁻¹ᵍ x))⁻¹
|
||
... = Hh theory n (pmap.mk f q) (Hsusp theory n A ((Hsusp theory n A)⁻¹ x))
|
||
: by exact Hsusp_natural theory n (pmap.mk f q) ((Hsusp theory n A)⁻¹ x)
|
||
... = Hh theory n (pmap.mk f q) x
|
||
: by exact ap (Hh theory n (pmap.mk f q)) (equiv.to_right_inv (equiv_of_isomorphism (Hsusp theory n A)) x)
|
||
|
||
theorem Hh_homotopy (n : ℤ) {A B : Type*} (f g : A →* B) (h : f ~ g) : Hh theory n f ~ Hh theory n g := λ x,
|
||
calc Hh theory n f x
|
||
= Hh theory n (pmap.mk f (respect_pt f)) x : by exact ap (λ f, Hh theory n f x) (pmap.eta f)⁻¹
|
||
... = Hh theory n (pmap.mk f (h pt ⬝ respect_pt g)) x : by exact Hh_homotopy' n f (respect_pt f) (h pt ⬝ respect_pt g) x
|
||
... = Hh theory n g x : by exact ap (λ f, Hh theory n f x) (@pmap_eq _ _ (pmap.mk f (h pt ⬝ respect_pt g)) _ h (refl (h pt ⬝ respect_pt g)))
|
||
|
||
definition HH_isomorphism (n : ℤ) {A B : Type*} (e : A ≃* B)
|
||
: HH theory n A ≃g HH theory n B :=
|
||
begin
|
||
fapply isomorphism.mk,
|
||
{ exact Hh theory n e },
|
||
fapply adjointify,
|
||
{ exact Hh theory n e⁻¹ᵉ* },
|
||
{ intro x, exact calc
|
||
Hh theory n e (Hh theory n e⁻¹ᵉ* x)
|
||
= Hh theory n (e ∘* e⁻¹ᵉ*) x : by exact (Hcompose theory n e e⁻¹ᵉ* x)⁻¹
|
||
... = Hh theory n !pid x : by exact Hh_homotopy n (e ∘* e⁻¹ᵉ*) !pid (to_right_inv e) x
|
||
... = x : by exact Hid theory n x
|
||
},
|
||
{ intro x, exact calc
|
||
Hh theory n e⁻¹ᵉ* (Hh theory n e x)
|
||
= Hh theory n (e⁻¹ᵉ* ∘* e) x : by exact (Hcompose theory n e⁻¹ᵉ* e x)⁻¹
|
||
... = Hh theory n !pid x : by exact Hh_homotopy n (e⁻¹ᵉ* ∘* e) !pid (to_left_inv e) x
|
||
... = x : by exact Hid theory n x
|
||
}
|
||
end
|
||
|
||
end
|
||
|
||
end homology
|