define submodules, quotient modules and homology of module morphisms

This commit is contained in:
Floris van Doorn 2017-04-13 20:39:04 -04:00
parent 93126a9c2b
commit aefc8eccc1
6 changed files with 333 additions and 5 deletions

View file

@ -119,7 +119,7 @@ namespace group
dirsum_functor (λi, homomorphism_add (f i) (f' i)) :=
begin
apply dirsum_homotopy,
intro i y, exact sorry
intro i y, esimp, exact sorry
end
definition dirsum_functor_homotopy {f f' : Πi, Y i →a Y' i} (p : f ~2 f') :

View file

@ -183,7 +183,8 @@ begin
end
definition dirsum : LeftModule R :=
LeftModule_of_AddAbGroup (dirsum' N) (λr n, dirsum_smul r n) (λr, homomorphism.addstruct (dirsum_smul r))
LeftModule_of_AddAbGroup (dirsum' N) (λr n, dirsum_smul r n)
(λr, homomorphism.addstruct (dirsum_smul r))
dirsum_smul_right_distrib
dirsum_mul_smul
dirsum_one_smul

View file

@ -158,6 +158,11 @@ end
definition LeftModule.struct2 [instance] {R : Ring} (M : LeftModule R) : left_module R M :=
LeftModule.struct M
-- definition LeftModule.struct3 [instance] {R : Ring} (M : LeftModule R) :
-- left_module R (AddAbGroup_of_LeftModule M) :=
-- _
definition pointed_LeftModule_carrier [instance] {R : Ring} (M : LeftModule R) :
pointed (LeftModule.carrier M) :=
pointed.mk zero
@ -364,6 +369,14 @@ end
: M₁ →lm M₂ :=
isomorphism_of_eq p
definition group_homomorphism_of_lm_homomorphism [constructor] {M₁ M₂ : LeftModule R}
(φ : M₁ →lm M₂) : M₁ →a M₂ :=
add_homomorphism.mk φ (to_respect_add φ)
definition lm_homomorphism_of_group_homomorphism [constructor] {M₁ M₂ : LeftModule R}
(φ : M₁ →a M₂) (h : Π(r : R) g, φ (r • g) = r • φ g) : M₁ →lm M₂ :=
homomorphism.mk' φ (group.to_respect_add φ) h
section
local attribute pSet_of_LeftModule [coercion]
definition is_exact_mod (f : M₁ →lm M₂) (f' : M₂ →lm M₃) : Type :=

View file

@ -113,7 +113,7 @@ namespace group
/-- Next, we formalize some aspects of normal subgroups. Recall that a normal subgroup H of a group G is a subgroup which is invariant under all inner automorophisms on G. --/
definition is_normal [constructor] {G : Group} (R : G → Prop) : Prop :=
definition is_normal.{u v} [constructor] {G : Group.{u}} (R : G → Prop.{v}) : Prop.{max u v} :=
trunctype.mk (Π{g} h, R g → R (h * g * h⁻¹)) _
structure normal_subgroup_rel (G : Group) extends subgroup_rel G :=
@ -244,7 +244,7 @@ namespace group
definition is_embedding_incl_of_subgroup {G : Group} (H : subgroup_rel G) : is_embedding (incl_of_subgroup H) :=
begin
fapply function.is_embedding_of_is_injective,
intro h h',
intro h h',
fapply subtype_eq
end
@ -256,7 +256,7 @@ namespace group
definition is_embedding_ab_kernel_incl {G H : AbGroup} (f : G →g H) : is_embedding (ab_kernel_incl f) :=
begin
fapply is_embedding_incl_of_subgroup,
end
end
definition subgroup_rel_of_subgroup {G : Group} (H1 H2 : subgroup_rel G) (hyp : Π (g : G), subgroup_rel.R H1 g → subgroup_rel.R H2 g) : subgroup_rel (subgroup H2) :=
subgroup_rel.mk

311
algebra/submodule.hlean Normal file
View file

@ -0,0 +1,311 @@
import .left_module .quotient_group
open algebra eq group sigma is_trunc function trunc
/- move to subgroup -/
namespace group
variables {G H K : Group} {R : subgroup_rel G} {S : subgroup_rel H} {T : subgroup_rel K}
definition subgroup_functor_fun [unfold 7] (φ : G →g H) (h : Πg, R g → S (φ g)) (x : subgroup R) :
subgroup S :=
begin
induction x with g hg,
exact ⟨φ g, h g hg⟩
end
definition subgroup_functor [constructor] (φ : G →g H)
(h : Πg, R g → S (φ g)) : subgroup R →g subgroup S :=
begin
fapply homomorphism.mk,
{ exact subgroup_functor_fun φ h },
{ intro x₁ x₂, induction x₁ with g₁ hg₁, induction x₂ with g₂ hg₂,
exact sigma_eq !to_respect_mul !is_prop.elimo }
end
definition ab_subgroup_functor [constructor] {G H : AbGroup} {R : subgroup_rel G}
{S : subgroup_rel H} (φ : G →g H)
(h : Πg, R g → S (φ g)) : ab_subgroup R →g ab_subgroup S :=
subgroup_functor φ h
theorem subgroup_functor_compose (ψ : H →g K) (φ : G →g H)
(hψ : Πg, S g → T (ψ g)) (hφ : Πg, R g → S (φ g)) :
subgroup_functor ψ hψ ∘g subgroup_functor φ hφ ~
subgroup_functor (ψ ∘g φ) (λg, proof hψ (φ g) qed ∘ hφ g) :=
begin
intro g, induction g with g hg, reflexivity
end
definition subgroup_functor_gid : subgroup_functor (gid G) (λg, id) ~ gid (subgroup R) :=
begin
intro g, induction g with g hg, reflexivity
end
definition subgroup_functor_mul {G H : AbGroup} {R : subgroup_rel G} {S : subgroup_rel H}
(ψ φ : G →g H) (hψ : Πg, R g → S (ψ g)) (hφ : Πg, R g → S (φ g)) :
homomorphism_mul (ab_subgroup_functor ψ hψ) (ab_subgroup_functor φ hφ) ~
ab_subgroup_functor (homomorphism_mul ψ φ)
(λg hg, subgroup_respect_mul S (hψ g hg) (hφ g hg)) :=
begin
intro g, induction g with g hg, reflexivity
end
definition subgroup_functor_homotopy {ψ φ : G →g H} (hψ : Πg, R g → S (ψ g))
(hφ : Πg, R g → S (φ g)) (p : φ ~ ψ) :
subgroup_functor φ hφ ~ subgroup_functor ψ hψ :=
begin
intro g, induction g with g hg,
exact subtype_eq (p g)
end
end group open group
namespace left_module
/- submodules -/
variables {R : Ring} {M : LeftModule R} {m m₁ m₂ : M}
structure submodule_rel (M : LeftModule R) : Type :=
(S : M → Prop)
(Szero : S 0)
(Sadd : Π⦃g h⦄, S g → S h → S (g + h))
(Ssmul : Π⦃g⦄ (r : R), S g → S (r • g))
definition contains_zero := @submodule_rel.Szero
definition contains_add := @submodule_rel.Sadd
definition contains_smul := @submodule_rel.Ssmul
attribute submodule_rel.S [coercion]
theorem contains_neg (S : submodule_rel M) ⦃m⦄ (H : S m) : S (-m) :=
transport (λx, S x) (neg_one_smul m) (contains_smul S (- 1) H)
theorem is_normal_submodule (S : submodule_rel M) ⦃m₁ m₂⦄ (H : S m₁) : S (m₂ + m₁ + (-m₂)) :=
transport (λx, S x) (by rewrite [add.comm, neg_add_cancel_left]) H
open submodule_rel
variables {S : submodule_rel M}
definition subgroup_rel_of_submodule_rel [constructor] (S : submodule_rel M) :
subgroup_rel (AddGroup_of_AddAbGroup M) :=
subgroup_rel.mk S (contains_zero S) (contains_add S) (contains_neg S)
definition submodule_rel_of_subgroup_rel [constructor] (S : subgroup_rel (AddGroup_of_AddAbGroup M))
(h : Π⦃g⦄ (r : R), S g → S (r • g)) : submodule_rel M :=
submodule_rel.mk S (subgroup_has_one S) @(subgroup_respect_mul S) h
definition submodule' (S : submodule_rel M) : AddAbGroup :=
ab_subgroup (subgroup_rel_of_submodule_rel S)
definition submodule_smul [constructor] (S : submodule_rel M) (r : R) :
submodule' S →a submodule' S :=
ab_subgroup_functor (smul_homomorphism M r) (λg, contains_smul S r)
definition submodule_smul_right_distrib (r s : R) (n : submodule' S) :
submodule_smul S (r + s) n = submodule_smul S r n + submodule_smul S s n :=
begin
refine subgroup_functor_homotopy _ _ _ n ⬝ !subgroup_functor_mul⁻¹,
intro m, exact to_smul_right_distrib r s m
end
definition submodule_mul_smul' (r s : R) (n : submodule' S) :
submodule_smul S (r * s) n = (submodule_smul S r ∘g submodule_smul S s) n :=
begin
refine subgroup_functor_homotopy _ _ _ n ⬝ (subgroup_functor_compose _ _ _ _ n)⁻¹ᵖ,
intro m, exact to_mul_smul r s m
end
definition submodule_mul_smul (r s : R) (n : submodule' S) :
submodule_smul S (r * s) n = submodule_smul S r (submodule_smul S s n) :=
by rexact submodule_mul_smul' r s n
definition submodule_one_smul (n : submodule' S) : submodule_smul S 1 n = n :=
begin
refine subgroup_functor_homotopy _ _ _ n ⬝ !subgroup_functor_gid,
intro m, exact to_one_smul m
end
definition submodule (S : submodule_rel M) : LeftModule R :=
LeftModule_of_AddAbGroup (submodule' S) (submodule_smul S)
(λr, homomorphism.addstruct (submodule_smul S r))
submodule_smul_right_distrib
submodule_mul_smul
submodule_one_smul
definition submodule_incl [constructor] (S : submodule_rel M) : submodule S →lm M :=
lm_homomorphism_of_group_homomorphism (incl_of_subgroup _)
begin
intro r m, induction m with m hm, reflexivity
end
definition incl_smul (S : submodule_rel M) (r : R) (m : M) (h : S m) :
r • ⟨m, h⟩ = ⟨_, contains_smul S r h⟩ :> submodule S :=
by reflexivity
definition submodule_rel_of_submodule [constructor] (S₂ S₁ : submodule_rel M) :
submodule_rel (submodule S₂) :=
submodule_rel.mk (λm, S₁ (submodule_incl S₂ m))
(contains_zero S₁)
(λm n p q, contains_add S₁ p q)
begin
intro m r p, induction m with m hm, exact contains_smul S₁ r p
end
end left_module
/- move to quotient_group -/
namespace group
variables {G H K : Group} {R : normal_subgroup_rel G} {S : normal_subgroup_rel H}
{T : normal_subgroup_rel K}
definition quotient_ab_group_functor [constructor] {G H : AbGroup} {R : subgroup_rel G}
{S : subgroup_rel H} (φ : G →g H)
(h : Πg, R g → S (φ g)) : quotient_ab_group R →g quotient_ab_group S :=
quotient_group_functor φ h
theorem quotient_group_functor_compose (ψ : H →g K) (φ : G →g H)
(hψ : Πg, S g → T (ψ g)) (hφ : Πg, R g → S (φ g)) :
quotient_group_functor ψ hψ ∘g quotient_group_functor φ hφ ~
quotient_group_functor (ψ ∘g φ) (λg, proof hψ (φ g) qed ∘ hφ g) :=
begin
intro g, induction g using set_quotient.rec_prop with g hg, reflexivity
end
definition quotient_group_functor_gid :
quotient_group_functor (gid G) (λg, id) ~ gid (quotient_group R) :=
begin
intro g, induction g using set_quotient.rec_prop with g hg, reflexivity
end
set_option pp.universes true
definition quotient_group_functor_mul.{u₁ v₁ u₂ v₂}
{G H : AbGroup} {R : subgroup_rel.{u₁ v₁} G} {S : subgroup_rel.{u₂ v₂} H}
(ψ φ : G →g H) (hψ : Πg, R g → S (ψ g)) (hφ : Πg, R g → S (φ g)) :
homomorphism_mul (quotient_ab_group_functor ψ hψ) (quotient_ab_group_functor φ hφ) ~
quotient_ab_group_functor (homomorphism_mul ψ φ)
(λg hg, subgroup_respect_mul S (hψ g hg) (hφ g hg)) :=
begin
intro g, induction g using set_quotient.rec_prop with g hg, reflexivity
end
definition quotient_group_functor_homotopy {ψ φ : G →g H} (hψ : Πg, R g → S (ψ g))
(hφ : Πg, R g → S (φ g)) (p : φ ~ ψ) :
quotient_group_functor φ hφ ~ quotient_group_functor ψ hψ :=
begin
intro g, induction g using set_quotient.rec_prop with g hg,
exact ap set_quotient.class_of (p g)
end
end group open group
namespace left_module
/- quotient modules -/
variables {R : Ring} {M M₁ M₂ M₃ : LeftModule R} {m m₁ m₂ : M} {S : submodule_rel M}
definition quotient_module' (S : submodule_rel M) : AddAbGroup :=
quotient_ab_group (subgroup_rel_of_submodule_rel S)
definition quotient_module_smul [constructor] (S : submodule_rel M) (r : R) :
quotient_module' S →a quotient_module' S :=
quotient_ab_group_functor (smul_homomorphism M r) (λg, contains_smul S r)
set_option formatter.hide_full_terms false
definition quotient_module_smul_right_distrib (r s : R) (n : quotient_module' S) :
quotient_module_smul S (r + s) n = quotient_module_smul S r n + quotient_module_smul S s n :=
begin
refine quotient_group_functor_homotopy _ _ _ n ⬝ !quotient_group_functor_mul⁻¹,
intro m, exact to_smul_right_distrib r s m
end
definition quotient_module_mul_smul' (r s : R) (n : quotient_module' S) :
quotient_module_smul S (r * s) n = (quotient_module_smul S r ∘g quotient_module_smul S s) n :=
begin
refine quotient_group_functor_homotopy _ _ _ n ⬝ (quotient_group_functor_compose _ _ _ _ n)⁻¹ᵖ,
intro m, exact to_mul_smul r s m
end
definition quotient_module_mul_smul (r s : R) (n : quotient_module' S) :
quotient_module_smul S (r * s) n = quotient_module_smul S r (quotient_module_smul S s n) :=
by rexact quotient_module_mul_smul' r s n
definition quotient_module_one_smul (n : quotient_module' S) : quotient_module_smul S 1 n = n :=
begin
refine quotient_group_functor_homotopy _ _ _ n ⬝ !quotient_group_functor_gid,
intro m, exact to_one_smul m
end
definition quotient_module (S : submodule_rel M) : LeftModule R :=
LeftModule_of_AddAbGroup (quotient_module' S) (quotient_module_smul S)
(λr, homomorphism.addstruct (quotient_module_smul S r))
quotient_module_smul_right_distrib
quotient_module_mul_smul
quotient_module_one_smul
definition quotient_map (S : submodule_rel M) : M →lm quotient_module S :=
lm_homomorphism_of_group_homomorphism (ab_qg_map _) (λr g, idp)
/- specific submodules -/
definition has_scalar_image (φ : M₁ →lm M₂) ⦃m : M₂⦄ (r : R)
(h : image φ m) : image φ (r • m) :=
begin
induction h with m' p,
apply image.mk (r • m'),
refine to_respect_smul φ r m' ⬝ ap (λx, r • x) p,
end
definition image_rel (φ : M₁ →lm M₂) : submodule_rel M₂ :=
submodule_rel_of_subgroup_rel
(image_subgroup (group_homomorphism_of_lm_homomorphism φ))
(has_scalar_image φ)
definition has_scalar_kernel (φ : M₁ →lm M₂) ⦃m : M₁⦄ (r : R)
(p : φ m = 0) : φ (r • m) = 0 :=
begin
refine to_respect_smul φ r m ⬝ ap (λx, r • x) p ⬝ smul_zero r,
end
definition kernel_rel (φ : M₁ →lm M₂) : submodule_rel M₁ :=
submodule_rel_of_subgroup_rel
(kernel_subgroup (group_homomorphism_of_lm_homomorphism φ))
(has_scalar_kernel φ)
definition homology (ψ : M₂ →lm M₃) (φ : M₁ →lm M₂) : LeftModule R :=
@quotient_module R (submodule (kernel_rel ψ)) (submodule_rel_of_submodule _ (image_rel φ))
variables {ψ : M₂ →lm M₃} {φ : M₁ →lm M₂} (h : Πm, ψ (φ m) = 0)
definition homology.mk (m : M₂) (h : ψ m = 0) : homology ψ φ :=
quotient_map _ ⟨m, h⟩
definition homology_eq0 {m : M₂} {hm : ψ m = 0} (h : image φ m) :
homology.mk m hm = 0 :> homology ψ φ :=
ab_qg_map_eq_one _ h
definition homology_eq0' {m : M₂} {hm : ψ m = 0} (h : image φ m):
homology.mk m hm = homology.mk 0 (to_respect_zero ψ) :> homology ψ φ :=
ab_qg_map_eq_one _ h
definition homology_eq {m n : M₂} {hm : ψ m = 0} {hn : ψ n = 0} (h : image φ (m - n)) :
homology.mk m hm = homology.mk n hn :> homology ψ φ :=
eq_of_sub_eq_zero (homology_eq0 h)
-- definition homology.rec (P : homology ψ φ → Type)
-- [H : Πx, is_set (P x)] (h₀ : Π(m : M₂) (h : ψ m = 0), P (homology.mk m h))
-- (h₁ : Π(m : M₂) (h : ψ m = 0) (k : image φ m), h₀ m h =[homology_eq0' k] h₀ 0 (to_respect_zero ψ))
-- : Πx, P x :=
-- begin
-- refine @set_quotient.rec _ _ _ H _ _,
-- { intro v, induction v with m h, exact h₀ m h },
-- { intro v v', induction v with m hm, induction v' with n hn,
-- esimp, intro h,
-- exact change_path _ _, }
-- end
end left_module

View file

@ -555,6 +555,9 @@ namespace group
refine !add.assoc ⬝ ap (add _) (!add.assoc⁻¹ ⬝ ap (λx, x + _) !add.comm ⬝ !add.assoc) ⬝ !add.assoc⁻¹
end end
definition homomorphism_mul [constructor] {G H : AbGroup} (φ ψ : G →g H) : G →g H :=
homomorphism.mk (λg, φ g * ψ g) (to_respect_add (homomorphism_add φ ψ))
definition pmap_of_homomorphism_gid (G : Group) : pmap_of_homomorphism (gid G) ~* pid G :=
begin
fapply phomotopy_of_homotopy, reflexivity