start on gysin sequence

This commit is contained in:
Floris van Doorn 2018-10-09 21:27:50 -04:00
parent 94066a6ba8
commit af447f4f8e

39
cohomology/gysin.hlean Normal file
View file

@ -0,0 +1,39 @@
/- the construction of the Gysin sequence using the Serre spectral sequence -/
-- author: Floris van Doorn
import .serre
open eq pointed is_trunc is_conn is_equiv equiv sphere fiber chain_complex left_module spectrum nat
prod nat int algebra
namespace cohomology
definition gysin_sequence' {E B : Type*} (n : ) (HB : is_conn 1 B) (f : E →* B)
(e : pfiber f ≃* sphere (n+1)) (A : AbGroup) : chain_complex +3 :=
let c := serre_spectral_sequence_map_of_is_conn pt f (EM_spectrum A) 0 (is_strunc_EM_spectrum A) HB
in
left_module.LES_of_SESs _ _ _ (λm, convergent_spectral_sequence.d c n (m, n))
begin
intro m,
fapply short_exact_mod_isomorphism,
rotate 3,
{ fapply short_exact_mod_of_is_contr_submodules
(spectral_sequence.convergence_0 c (n + m) (λm, neg_zero)),
{ exact zero_lt_succ n },
{ intro k Hk0 Hkn, apply spectral_sequence.is_contr_E,
apply is_contr_ordinary_cohomology,
refine is_contr_equiv_closed_rev _
(unreduced_ordinary_cohomology_sphere_of_neq_nat A Hkn Hk0),
apply group.equiv_of_isomorphism, apply unreduced_ordinary_cohomology_isomorphism,
exact e⁻¹ᵉ* }},
end
-- (λm, short_exact_mod_isomorphism
-- _
-- isomorphism.rfl
-- _
-- (short_exact_mod_of_is_contr_submodules
-- (convergent_spectral_sequence.HDinf X _)
-- (zero_lt_succ n)
-- _))
end cohomology