Merge branch 'master' of github.com:cmu-phil/Spectral

This commit is contained in:
Mike Shulman 2016-03-24 16:30:22 -07:00
commit af5a3091bb
11 changed files with 675 additions and 169 deletions

View file

@ -28,18 +28,36 @@ Jeremy Avigad, Steve Awodey, Ulrik Buchholtz, Floris van Doorn, Clive Newstead,
- [convergence of spectral sequences](http://ncatlab.org/nlab/show/spectral+sequence#ConvergenceOfSpectralSequences)
### Topology To Do:
- HoTT Book chapter 8
- fiber and cofiber sequences (is this in the library already?)
- HoTT Book sections 8.7, 8.8.
- fiber sequence
+ already have the LES
+ need shift isomorphism
+ Hom'ing into a fiber sequence gives another fiber sequence.
- cofiber sequences
+ Hom'ing out gives a fiber sequence: if `A → B → coker f` cofiber
sequences, then `X^A → X^B → X^(coker f)` is a fiber sequence.
- [prespectra](http://ncatlab.org/nlab/show/spectrum+object) and [spectra](http://ncatlab.org/nlab/show/spectrum), suspension
+ try indexing on arbitrary successor structure
+ think about equivariant spectra indexed by representations of `G`
- [spectrification](http://ncatlab.org/nlab/show/higher+inductive+type#spectrification)
+ adjoint to forgetful
+ as sequential colimit, prove induction principle (if useful)
+ connective spectrum: `is_conn n.-2 Eₙ`
- [parametrized spectra](http://ncatlab.org/nlab/show/parametrized+spectrum), parametrized smash and hom between types and spectra
- fiber and cofiber sequences of spectra, stability
+ limits are levelwise
+ colimits need to be spectrified
- long exact sequences from (co)fiber sequences of spectra
+ indexed on , need to splice together LES's
- [Eilenberg-MacLane spaces](http://ncatlab.org/nlab/show/Eilenberg-Mac+Lane+space) and spectra
- Postnikov towers of spectra
+ basic definition already there
+ fibers of Postnikov sequence unstably and stably
- exact couple of a tower of spectra
+ need to splice together LES's
### Already Done:
- pointed types
- definition of algebraic structures such as groups, rings, fields,
- some algebra: quotient, product, free.
- Most things in the HoTT Book up to Section 8.6 (see [this file](https://github.com/leanprover/lean/blob/master/hott/book.md))
- pointed types, maps, homotopies and equivalences
- definition of algebraic structures such as groups, rings, fields
- some algebra: quotient, product, free groups.

7
algebra/graded.hlean Normal file
View file

@ -0,0 +1,7 @@
/-
Copyright (c) 2016 Egbert Rijke. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Egbert Rijke
Graded modules and rings.
-/

73
algebra/module.hlean Normal file
View file

@ -0,0 +1,73 @@
/-
Copyright (c) 2015 Nathaniel Thomas. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Nathaniel Thomas, Jeremy Avigad
Modules prod vector spaces over a ring.
(We use "left_module," which is more precise, because "module" is a keyword.)
-/
import algebra.field
open algebra
structure has_scalar [class] (F V : Type) :=
(smul : F → V → V)
infixl ` • `:73 := has_scalar.smul
/- modules over a ring -/
structure left_module [class] (R M : Type) [ringR : ring R]
extends has_scalar R M, add_comm_group M :=
(smul_left_distrib : Π (r : R) (x y : M), smul r (add x y) = (add (smul r x) (smul r y)))
(smul_right_distrib : Π (r s : R) (x : M), smul (ring.add r s) x = (add (smul r x) (smul s x)))
(mul_smul : Π r s x, smul (mul r s) x = smul r (smul s x))
(one_smul : Π x, smul one x = x)
section left_module
variables {R M : Type}
variable [ringR : ring R]
variable [moduleRM : left_module R M]
include ringR moduleRM
-- Note: the anonymous include does not work in the propositions below.
proposition smul_left_distrib (a : R) (u v : M) : a • (u + v) = a • u + a • v :=
!left_module.smul_left_distrib
proposition smul_right_distrib (a b : R) (u : M) : (a + b) • u = a • u + b • u :=
!left_module.smul_right_distrib
proposition mul_smul (a : R) (b : R) (u : M) : (a * b) • u = a • (b • u) :=
!left_module.mul_smul
proposition one_smul (u : M) : (1 : R) • u = u := !left_module.one_smul
proposition zero_smul (u : M) : (0 : R) • u = 0 :=
have (0 : R) • u + 0 • u = 0 • u + 0, by rewrite [-smul_right_distrib, *add_zero],
!add.left_cancel this
proposition smul_zero (a : R) : a • (0 : M) = 0 :=
have a • (0:M) + a • 0 = a • 0 + 0, by rewrite [-smul_left_distrib, *add_zero],
!add.left_cancel this
proposition neg_smul (a : R) (u : M) : (-a) • u = - (a • u) :=
eq_neg_of_add_eq_zero (by rewrite [-smul_right_distrib, add.left_inv, zero_smul])
proposition neg_one_smul (u : M) : -(1 : R) • u = -u :=
by rewrite [neg_smul, one_smul]
proposition smul_neg (a : R) (u : M) : a • (-u) = -(a • u) :=
by rewrite [-neg_one_smul, -mul_smul, mul_neg_one_eq_neg, neg_smul]
proposition smul_sub_left_distrib (a : R) (u v : M) : a • (u - v) = a • u - a • v :=
by rewrite [sub_eq_add_neg, smul_left_distrib, smul_neg]
proposition sub_smul_right_distrib (a b : R) (v : M) : (a - b) • v = a • v - b • v :=
by rewrite [sub_eq_add_neg, smul_right_distrib, neg_smul]
end left_module
/- vector spaces -/
structure vector_space [class] (F V : Type) [fieldF : field F]
extends left_module F V

View file

@ -1,6 +1,7 @@
import .LES_of_homotopy_groups homotopy.connectedness homotopy.homotopy_group
open eq is_trunc pointed homotopy is_equiv fiber equiv trunc nat chain_complex prod fin algebra
group trunc_index function
import .LES_of_homotopy_groups homotopy.connectedness homotopy.homotopy_group homotopy.join
open eq is_trunc pointed is_conn is_equiv fiber equiv trunc nat chain_complex prod fin algebra
group trunc_index function join pushout
namespace nat
open sigma sum
definition eq_even_or_eq_odd (n : ) : (Σk, 2 * k = n) ⊎ (Σk, 2 * k + 1 = n) :=
@ -25,63 +26,16 @@ open nat
namespace is_conn
theorem is_contr_HG_fiber_of_is_connected {A B : Type*} (k n : ) (f : A →* B)
[H : is_conn_map n f] (H2 : k ≤ n) : is_contr (π[k] (pfiber f)) :=
@(trivial_homotopy_group_of_is_conn (pfiber f) H2) (H pt)
-- TODO: use this for trivial_homotopy_group_of_is_conn (in homotopy.homotopy_group)
theorem is_conn_of_le (A : Type) {n k : ℕ₋₂} (H : n ≤ k) [is_conn k A] : is_conn n A :=
begin
apply is_contr_equiv_closed,
apply trunc_trunc_equiv_left _ n k H
end
definition zero_le_of_nat (n : ) : 0 ≤[ℕ₋₂] n :=
of_nat_le_of_nat (zero_le n)
local attribute is_conn_map [reducible] --TODO
theorem is_conn_map_of_le {A B : Type} (f : A → B) {n k : ℕ₋₂} (H : n ≤ k)
[is_conn_map k f] : is_conn_map n f :=
λb, is_conn_of_le _ H
definition is_surjective_trunc_functor {A B : Type} (n : ℕ₋₂) (f : A → B) [H : is_surjective f]
: is_surjective (trunc_functor n f) :=
begin
cases n with n: intro b,
{ exact tr (fiber.mk !center !is_prop.elim)},
{ refine @trunc.rec _ _ _ _ _ b, {intro x, exact is_trunc_of_le _ !minus_one_le_succ},
clear b, intro b, induction H b with v, induction v with a p,
exact tr (fiber.mk (tr a) (ap tr p))}
end
definition is_surjective_cancel_right {A B C : Type} (g : B → C) (f : A → B)
[H : is_surjective (g ∘ f)] : is_surjective g :=
begin
intro c,
induction H c with v, induction v with a p,
exact tr (fiber.mk (f a) p)
end
-- Lemma 7.5.14
theorem is_equiv_trunc_functor_of_is_conn_map {A B : Type} (n : ℕ₋₂) (f : A → B)
[H : is_conn_map n f] : is_equiv (trunc_functor n f) :=
begin
exact sorry
end
definition is_equiv_tinverse [constructor] (A : Type*) : is_equiv (@tinverse A) :=
by apply @is_equiv_trunc_functor; apply is_equiv_eq_inverse
local attribute comm_group.to_group [coercion]
local attribute is_equiv_tinverse [instance]
theorem is_equiv_π_of_is_connected.{u} {A B : pType.{u}} (n k : ) (f : A →* B)
[H : is_conn_map n f] (H2 : k ≤ n) : is_equiv (π→[k] f) :=
[H : is_conn_fun n f] (H2 : k ≤ n) : is_equiv (π→[k] f) :=
begin
induction k using rec_on_even_odd with k: cases k with k,
{ /- k = 0 -/
change (is_equiv (trunc_functor 0 f)), apply is_equiv_trunc_functor_of_is_conn_map,
refine is_conn_map_of_le f (zero_le_of_nat n)},
change (is_equiv (trunc_functor 0 f)), apply is_equiv_trunc_functor_of_is_conn_fun,
refine is_conn_fun_of_le f (zero_le_of_nat n)},
{ /- k > 0 even -/
have H2' : 2 * k + 1 ≤ n, from le.trans !self_le_succ H2,
exact
@ -113,21 +67,53 @@ namespace is_conn
end
theorem is_surjective_π_of_is_connected.{u} {A B : pType.{u}} (n : ) (f : A →* B)
[H : is_conn_map n f] : is_surjective (π→[n + 1] f) :=
[H : is_conn_fun n f] : is_surjective (π→[n + 1] f) :=
begin
induction n using rec_on_even_odd with n,
{ cases n with n,
{ exact sorry},
{ have H3 : is_surjective (π→*[2*(succ n) + 1] f ∘* tinverse), from
@is_surjective_of_trivial _
(LES_of_homotopy_groups3 f) _
(is_exact_LES_of_homotopy_groups3 f (succ n, 2))
(@is_contr_HG_fiber_of_is_connected A B (2 * succ n) (2 * succ n) f H !le.refl),
exact @(is_surjective_cancel_right (pmap.to_fun (π→*[2*(succ n) + 1] f)) tinverse) H3}},
{ have H3 : is_surjective (π→*[2*n + 1] f ∘* tinverse), from
@is_surjective_of_trivial _
(LES_of_homotopy_groups3 f) _
(is_exact_LES_of_homotopy_groups3 f (n, 2))
(@is_contr_HG_fiber_of_is_connected A B (2 * n) (2 * n) f H !le.refl),
exact @(is_surjective_cancel_right (pmap.to_fun (π→*[2*n + 1] f)) tinverse) H3},
{ exact @is_surjective_of_trivial _
(LES_of_homotopy_groups3 f) _
(is_exact_LES_of_homotopy_groups3 f (k, 5))
(@is_contr_HG_fiber_of_is_connected A B (2 * k + 1) (2 * k + 1) f H !le.refl)}
end
/- joins -/
definition join_empty_right [constructor] (A : Type) : join A empty ≃ A :=
begin
fapply equiv.MK,
{ intro x, induction x with a o a o,
{ exact a },
{ exact empty.elim o },
{ exact empty.elim o } },
{ exact pushout.inl },
{ intro a, reflexivity},
{ intro x, induction x with a o a o,
{ reflexivity },
{ exact empty.elim o },
{ exact empty.elim o } }
end
definition natural_square2 {A B X : Type} {f : A → X} {g : B → X} (h : Πa b, f a = g b)
{a a' : A} {b b' : B} (p : a = a') (q : b = b')
: square (ap f p) (ap g q) (h a b) (h a' b') :=
by induction p; induction q; exact hrfl
section
open sphere sphere_index
definition add_plus_one_minus_one (n : ℕ₋₁) : n +1+ -1 = n := idp
definition add_plus_one_succ (n m : ℕ₋₁) : n +1+ (m.+1) = (n +1+ m).+1 := idp
definition minus_one_add_plus_one (n : ℕ₋₁) : -1 +1+ n = n :=
begin induction n with n IH, reflexivity, exact ap succ IH end
definition succ_add_plus_one (n m : ℕ₋₁) : (n.+1) +1+ m = (n +1+ m).+1 :=
begin induction m with m IH, reflexivity, exact ap succ IH end
end
end is_conn

View file

@ -208,9 +208,10 @@ namespace chain_complex
theorem fiber_sequence_fun_eq : Π(x : fiber_sequence_carrier f (n + 4)),
fiber_sequence_carrier_pequiv f n (fiber_sequence_fun f (n + 3) x) =
ap1 (fiber_sequence_fun f n) (fiber_sequence_carrier_pequiv f (n + 1) x)⁻¹ :=
homotopy_of_inv_homotopy
(pequiv.to_equiv (fiber_sequence_carrier_pequiv f (n + 1)))
(fiber_sequence_fun_eq_helper f n)
begin
apply homotopy_of_inv_homotopy_pre (fiber_sequence_carrier_pequiv f (n + 1)),
apply fiber_sequence_fun_eq_helper f n
end
theorem fiber_sequence_fun_phomotopy :
fiber_sequence_carrier_pequiv f n ∘*

View file

@ -209,8 +209,8 @@ namespace chain_complex
have H2 : tcc_to_fn X (f m) ((equiv_of_eq (ap (λx, X x) (c m)))⁻¹ᵉ (e⁻¹ y)) = pt,
begin
refine _ ⬝ ap e⁻¹ᵉ* q ⬝ (respect_pt (e⁻¹ᵉ*)), apply eq_inv_of_eq, clear q, revert y,
refine inv_homotopy_of_homotopy (pequiv.to_equiv e) _,
apply inv_homotopy_of_homotopy, apply p
apply inv_homotopy_of_homotopy_pre e,
apply inv_homotopy_of_homotopy_pre, apply p
end,
induction (H _ H2) with x r,
refine fiber.mk (e (cast (ap (λx, X x) (c (S m))) (cast (ap (λx, X (S x)) (c m)) x))) _,
@ -495,7 +495,6 @@ namespace chain_complex
pt_mul := one_mul,
mul_pt := mul_one,
mul_left_inv_pt := mul.left_inv⦄
end
-- the following theorems would also be true of the replace "is_contr" by "is_prop"

View file

@ -0,0 +1,83 @@
/-- Authors: Clive, Egbert --/
import homotopy.connectedness homotopy.join
open eq sigma pi function join is_conn is_trunc equiv is_equiv
namespace retraction
variables {A B C : Type} (r2 : B → C) (r1 : A → B)
definition is_retraction_compose
[Hr2 : is_retraction r2] [Hr1 : is_retraction r1] :
is_retraction (r2 ∘ r1) :=
begin
cases Hr2 with s2 s2_is_right_inverse,
cases Hr1 with s1 s1_is_right_inverse,
fapply is_retraction.mk,
{ exact s1 ∘ s2},
{ intro b, esimp,
calc
r2 (r1 (s1 (s2 (b)))) = r2 (s2 (b)) : ap r2 (s1_is_right_inverse (s2 b))
... = b : s2_is_right_inverse b
}, /-- QED --/
end
definition is_retraction_compose_equiv_left [Hr2 : is_equiv r2] [Hr1 : is_retraction r1] : is_retraction (r2 ∘ r1) :=
begin
apply is_retraction_compose,
end
definition is_retraction_compose_equiv_right [Hr2 : is_retraction r2] [Hr1 : is_equiv r1] : is_retraction (r2 ∘ r1) :=
begin
apply is_retraction_compose,
end
end retraction
namespace is_conn
section
open retraction
universe variable u
parameters (n : ℕ₋₂) {A : Type.{u}}
parameter sec : ΠV : trunctype.{u} n,
is_retraction (const A : V → (A → V))
include sec
protected definition intro : is_conn n A :=
begin
apply is_conn_of_map_to_unit,
apply is_conn_fun.intro,
intro P,
refine is_retraction_compose_equiv_right (const A) (pi_unit_left P),
end
end
end is_conn
section Join_Theorem
variables (X Y : Type)
(m n : ℕ₋₂)
[HXm : is_conn m X]
[HYn : is_conn n Y]
include HXm HYn
theorem is_conn_join : is_conn (m +2+ n) (join X Y) :=
begin
apply is_conn.intro,
intro V,
apply is_retraction_of_is_equiv,
apply is_equiv_of_is_contr_fun,
intro f,
refine is_contr_equiv_closed _,
{exact unit},
symmetry,
exact sorry
end
end Join_Theorem

View file

@ -21,13 +21,13 @@ namespace homotopy
assumption
end
definition is_conn_map (n : trunc_index) {A B : Type} (f : A → B) : Type :=
definition is_conn_fun (n : trunc_index) {A B : Type} (f : A → B) : Type :=
Πb : B, is_conn n (fiber f b)
namespace is_conn_map
namespace is_conn_fun
section
parameters {n : trunc_index} {A B : Type} {h : A → B}
(H : is_conn_map n h) (P : B → n -Type)
(H : is_conn_fun n h) (P : B → n -Type)
private definition helper : (Πa : A, P (h a)) → Πb : B, trunc n (fiber h b) → P b :=
λt b, trunc.rec (λx, point_eq x ▸ t (point x))
@ -67,7 +67,7 @@ namespace homotopy
include sec
-- the other half of Lemma 7.5.7
definition intro : is_conn_map n h :=
definition intro : is_conn_fun n h :=
begin
intro b,
apply is_contr.mk (@is_retraction.sect _ _ _ s (λa, tr (fiber.mk a idp)) b),
@ -79,22 +79,22 @@ namespace homotopy
exact apd10 (@right_inverse _ _ _ s (λa, tr (fiber.mk a idp))) a
end
end
end is_conn_map
end is_conn_fun
-- Connectedness is related to maps to and from the unit type, first to
section
parameters (n : trunc_index) (A : Type)
definition is_conn_of_map_to_unit
: is_conn_map n (λx : A, unit.star) → is_conn n A :=
: is_conn_fun n (λx : A, unit.star) → is_conn n A :=
begin
intro H, unfold is_conn_map at H,
intro H, unfold is_conn_fun at H,
rewrite [-(ua (fiber.fiber_star_equiv A))],
exact (H unit.star)
end
-- now maps from unit
definition is_conn_of_map_from_unit (a₀ : A) (H : is_conn_map n (const unit a₀))
definition is_conn_of_map_from_unit (a₀ : A) (H : is_conn_fun n (const unit a₀))
: is_conn n .+1 A :=
is_contr.mk (tr a₀)
begin
@ -103,8 +103,8 @@ namespace homotopy
(@center _ (H a))
end
definition is_conn_map_from_unit (a₀ : A) [H : is_conn n .+1 A]
: is_conn_map n (const unit a₀) :=
definition is_conn_fun_from_unit (a₀ : A) [H : is_conn n .+1 A]
: is_conn_fun n (const unit a₀) :=
begin
intro a,
apply is_conn_equiv_closed n (equiv.symm (fiber_const_equiv A a₀ a)),
@ -115,14 +115,14 @@ namespace homotopy
-- Lemma 7.5.2
definition minus_one_conn_of_surjective {A B : Type} (f : A → B)
: is_surjective f → is_conn_map -1 f :=
: is_surjective f → is_conn_fun -1 f :=
begin
intro H, intro b,
exact @is_contr_of_inhabited_prop (∥fiber f b∥) (is_trunc_trunc -1 (fiber f b)) (H b),
end
definition is_surjection_of_minus_one_conn {A B : Type} (f : A → B)
: is_conn_map -1 f → is_surjective f :=
: is_conn_fun -1 f → is_surjective f :=
begin
intro H, intro b,
exact @center (∥fiber f b∥) (H b),
@ -141,7 +141,7 @@ namespace homotopy
-- Lemma 7.5.4
definition retract_of_conn_is_conn [instance] (r : arrow_hom f g) [H : is_retraction r]
(n : trunc_index) [K : is_conn_map n f] : is_conn_map n g :=
(n : trunc_index) [K : is_conn_fun n f] : is_conn_fun n g :=
begin
intro b, unfold is_conn,
apply is_contr_retract (trunc_functor n (retraction_on_fiber r b)),
@ -152,7 +152,7 @@ namespace homotopy
-- Corollary 7.5.5
definition is_conn_homotopy (n : trunc_index) {A B : Type} {f g : A → B}
(p : f ~ g) (H : is_conn_map n f) : is_conn_map n g :=
(p : f ~ g) (H : is_conn_fun n f) : is_conn_fun n g :=
@retract_of_conn_is_conn _ _ (arrow.arrow_hom_of_homotopy p) (arrow.is_retraction_arrow_hom_of_homotopy p) n H
-- all types are -2-connected
@ -181,8 +181,8 @@ namespace homotopy
{ intros H,
change ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid a'),
generalize a',
apply is_conn_map.elim
(is_conn_map_from_unit n A a)
apply is_conn_fun.elim
(is_conn_fun_from_unit n A a)
(λx : A, trunctype.mk' n (ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid x))),
intros,
change ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid a),

View file

@ -1,44 +0,0 @@
-- Section 8.3
import types.trunc types.pointed homotopy.connectedness homotopy.sphere homotopy.circle algebra.group algebra.homotopy_group
open eq is_trunc is_equiv nat equiv trunc function circle algebra pointed trunc_index homotopy
-- Lemma 8.3.1
theorem trivial_homotopy_group_of_is_trunc (A : Type*) (n k : ) [is_trunc n A] (H : n ≤ k)
: is_contr (πg[k+1] A) :=
begin
apply is_trunc_trunc_of_is_trunc,
apply is_contr_loop_of_is_trunc,
apply @is_trunc_of_le A n _,
exact of_nat_le_of_nat H
end
-- Lemma 8.3.2
theorem trivial_homotopy_group_of_is_conn (A : Type*) {k n : } (H : k ≤ n) [is_conn n A]
: is_contr (π[k] A) :=
begin
have H2 : of_nat k ≤ of_nat n, from of_nat_le_of_nat H,
have H3 : is_contr (ptrunc k A),
begin
fapply is_contr_equiv_closed,
{ apply trunc_trunc_equiv_left _ k n H2}
end,
have H4 : is_contr (Ω[k](ptrunc k A)),
from !is_trunc_loop_of_is_trunc,
apply is_trunc_equiv_closed_rev,
{ apply equiv_of_pequiv (phomotopy_group_pequiv_loop_ptrunc k A)}
end
-- Corollary 8.3.3
open sphere.ops sphere_index
theorem homotopy_group_sphere_le (n k : ) (H : k < n) : is_contr (π[k] (S. n)) :=
begin
cases n with n,
{ exfalso, apply not_lt_zero, exact H},
{ have H2 : k ≤ n, from le_of_lt_succ H,
apply @(trivial_homotopy_group_of_is_conn _ H2),
rewrite [-trunc_index.of_sphere_index_of_nat, -trunc_index.succ_sub_one], apply is_conn_sphere}
end

View file

@ -1,45 +1,276 @@
-- TODO: in wedge connectivity and is_conn.elim, unbundle P
import homotopy.wedge types.pi .LES_applications --TODO: remove
import homotopy.wedge types.pi
open eq is_conn is_trunc pointed susp nat pi equiv is_equiv trunc fiber trunc_index
open eq homotopy is_trunc pointed susp nat pi equiv is_equiv trunc
-- definition iterated_loop_ptrunc_pequiv_con' (n : ℕ₋₂) (k : ) (A : Type*)
-- (p q : Ω[k](ptrunc (n+k) (Ω A))) :
-- iterated_loop_ptrunc_pequiv n k (Ω A) (loop_mul trunc_concat p q) =
-- trunc_functor2 (loop_mul concat) (iterated_loop_ptrunc_pequiv n k (Ω A) p)
-- (iterated_loop_ptrunc_pequiv n k (Ω A) q) :=
-- begin
-- revert n p q, induction k with k IH: intro n p q,
-- { reflexivity},
-- { exact sorry}
-- end
section freudenthal
-- example : ((@add.{0} trunc_index has_add_trunc_index n
-- (trunc_index.of_nat
-- (@add.{0} nat nat._trans_of_decidable_linear_ordered_semiring_17 nat.zero
-- (@one.{0} nat nat._trans_of_decidable_linear_ordered_semiring_21))))) = (0 : ℕ₋₂) := proof idp qed
parameters {A : Type*} (n : ) [is_conn n A]
--set_option pp.notation false
protected definition my_wedge_extension.ext : Π {A : Type*} {B : Type*} (n m : ) [cA : is_conn n (carrier A)] [cB : is_conn m (carrier B)]
(P : carrier A → carrier B → (m+n)-Type) (f : Π (a : carrier A), trunctype.carrier (P a (Point B)))
(g : Π (b : carrier B), trunctype.carrier (P (Point A) b)),
f (Point A) = g (Point B) → (Π (a : carrier A) (b : carrier B), trunctype.carrier (P a b)) :=
sorry
definition code_fun (a : A) (q : north = north :> susp A)
: trunc (n * 2) (fiber (pmap.to_fun (loop_susp_unit A)) q) → trunc (n * 2) (fiber merid (q ⬝ merid a)) :=
begin
intro x, induction x with x,
esimp at *, cases x with a' p,
-- apply my_wedge_extension.ext n n,
exact sorry
end
definition code (y : susp A) : north = y → Type :=
susp.rec_on y
(λp, trunc (2*n) (fiber (loop_susp_unit A) p))
(λq, trunc (2*n) (fiber merid q))
definition iterated_loop_ptrunc_pequiv_con (n : ℕ₋₂) (k : ) (A : Type*)
(p q : Ω[k + 1](ptrunc (n+k+1) A)) :
iterated_loop_ptrunc_pequiv n (k+1) A (p ⬝ q) =
trunc_concat (iterated_loop_ptrunc_pequiv n (k+1) A p)
(iterated_loop_ptrunc_pequiv n (k+1) A q) :=
begin
intros,
apply arrow_pathover_constant_right,
intro q, rewrite [transport_eq_r],
apply ua,
exact sorry
-- induction k with k IH,
-- { replace (nat.zero + 1) with (nat.succ nat.zero), esimp [iterated_loop_ptrunc_pequiv],
-- exact sorry},
-- { exact sorry}
end
definition freudenthal_suspension : is_conn_map (n*2) (loop_susp_unit A) :=
sorry
theorem elim_type_merid_inv {A : Type} (PN : Type) (PS : Type) (Pm : A → PN ≃ PS)
(a : A) : transport (susp.elim_type PN PS Pm) (merid a)⁻¹ = to_inv (Pm a) :=
by rewrite [tr_eq_cast_ap_fn,↑susp.elim_type,ap_inv,elim_merid]; apply cast_ua_inv_fn
definition is_conn_trunc (A : Type) (n k : ℕ₋₂) [H : is_conn n A]
: is_conn n (trunc k A) :=
begin
apply is_trunc_equiv_closed, apply trunc_trunc_equiv_trunc_trunc
end
section open sphere sphere.ops
definition psphere_succ [unfold_full] (n : ) : S. (n + 1) = psusp (S. n) := idp
end
end freudenthal
namespace freudenthal section
parameters {A : Type*} {n : } [is_conn n A]
--porting from Agda
-- definition Q (x : susp A) : Type :=
-- trunc (k) (north = x)
definition up (a : A) : north = north :> susp A := -- up a = loop_susp_unit A a
merid a ⬝ (merid pt)⁻¹
definition code_merid : A → ptrunc (n + n) A → ptrunc (n + n) A :=
begin
have is_conn n (ptrunc (n + n) A), from !is_conn_trunc,
refine wedge_extension.ext n n (λ x y, ttrunc (n + n) A) _ _ _,
{ exact tr},
{ exact id},
{ reflexivity}
end
definition code_merid_β_left (a : A) : code_merid a pt = tr a :=
by apply wedge_extension.β_left
definition code_merid_β_right (b : ptrunc (n + n) A) : code_merid pt b = b :=
by apply wedge_extension.β_right
definition code_merid_coh : code_merid_β_left pt = code_merid_β_right pt :=
begin
symmetry, apply eq_of_inv_con_eq_idp, apply wedge_extension.coh
end
definition is_equiv_code_merid (a : A) : is_equiv (code_merid a) :=
begin
have Πa, is_trunc n.-2.+1 (is_equiv (code_merid a)),
from λa, is_trunc_of_le _ !minus_one_le_succ,
refine is_conn.elim (n.-1) _ _ a,
{ esimp, exact homotopy_closed id (homotopy.symm (code_merid_β_right))}
end
definition code_merid_equiv [constructor] (a : A) : trunc (n + n) A ≃ trunc (n + n) A :=
equiv.mk _ (is_equiv_code_merid a)
definition code_merid_inv_pt (x : trunc (n + n) A) : (code_merid_equiv pt)⁻¹ x = x :=
begin
refine ap010 @(is_equiv.inv _) _ x ⬝ _,
{ exact homotopy_closed id (homotopy.symm code_merid_β_right)},
{ apply is_conn.elim_β},
{ reflexivity}
end
definition code [unfold 4] : susp A → Type :=
susp.elim_type (trunc (n + n) A) (trunc (n + n) A) code_merid_equiv
definition is_trunc_code (x : susp A) : is_trunc (n + n) (code x) :=
begin
induction x with a: esimp,
{ exact _},
{ exact _},
{ apply is_prop.elimo}
end
local attribute is_trunc_code [instance]
definition decode_north [unfold 4] : code north → trunc (n + n) (north = north :> susp A) :=
trunc_functor (n + n) up
definition decode_north_pt : decode_north (tr pt) = tr idp :=
ap tr !con.right_inv
definition decode_south [unfold 4] : code south → trunc (n + n) (north = south :> susp A) :=
trunc_functor (n + n) merid
definition encode' {x : susp A} (p : north = x) : code x :=
transport code p (tr pt)
definition encode [unfold 5] {x : susp A} (p : trunc (n + n) (north = x)) : code x :=
begin
induction p with p,
exact transport code p (tr pt)
end
theorem encode_decode_north (c : code north) : encode (decode_north c) = c :=
begin
have H : Πc, is_trunc (n + n) (encode (decode_north c) = c), from _,
esimp at *,
induction c with a,
rewrite [↑[encode, decode_north, up, code], con_tr, elim_type_merid, ▸*,
code_merid_β_left, elim_type_merid_inv, ▸*, code_merid_inv_pt]
end
definition decode_coh_f (a : A) : tr (up pt) =[merid a] decode_south (code_merid a (tr pt)) :=
begin
refine _ ⬝op ap decode_south (code_merid_β_left a)⁻¹,
apply trunc_pathover,
apply eq_pathover_constant_left_id_right,
apply square_of_eq,
exact whisker_right !con.right_inv (merid a)
end
definition decode_coh_g (a' : A) : tr (up a') =[merid pt] decode_south (code_merid pt (tr a')) :=
begin
refine _ ⬝op ap decode_south (code_merid_β_right (tr a'))⁻¹,
apply trunc_pathover,
apply eq_pathover_constant_left_id_right,
apply square_of_eq, refine !inv_con_cancel_right ⬝ !idp_con⁻¹
end
definition decode_coh_lem {A : Type} {a a' : A} (p : a = a')
: whisker_right (con.right_inv p) p = inv_con_cancel_right p p ⬝ (idp_con p)⁻¹ :=
by induction p; reflexivity
theorem decode_coh (a : A) : decode_north =[merid a] decode_south :=
begin
apply arrow_pathover_left, intro c, esimp at *,
induction c with a',
rewrite [↑code, elim_type_merid, ▸*],
refine wedge_extension.ext n n _ _ _ _ a a',
{ exact decode_coh_f},
{ exact decode_coh_g},
{ clear a a', unfold [decode_coh_f, decode_coh_g], refine ap011 concato_eq _ _,
{ refine ap (λp, trunc_pathover (eq_pathover_constant_left_id_right (square_of_eq p))) _,
apply decode_coh_lem},
{ apply ap (λp, ap decode_south p⁻¹), apply code_merid_coh}}
end
definition decode [unfold 4] {x : susp A} (c : code x) : trunc (n + n) (north = x) :=
begin
induction x with a,
{ exact decode_north c},
{ exact decode_south c},
{ exact decode_coh a}
end
theorem decode_encode {x : susp A} (p : trunc (n + n) (north = x)) : decode (encode p) = p :=
begin
induction p with p, induction p, esimp, apply decode_north_pt
end
parameters (A n)
definition equiv' : trunc (n + n) A ≃ trunc (n + n) (Ω (psusp A)) :=
equiv.MK decode_north encode decode_encode encode_decode_north
definition pequiv' : ptrunc (n + n) A ≃* ptrunc (n + n) (Ω (psusp A)) :=
pequiv_of_equiv equiv' decode_north_pt
-- can we get this?
-- definition freudenthal_suspension : is_conn_fun (n+n) (loop_susp_unit A) :=
-- begin
-- intro p, esimp at *, fapply is_contr.mk,
-- { note c := encode (tr p), esimp at *, induction c with a, },
-- { exact sorry}
-- end
-- {- Used to prove stability in iterated suspensions -}
-- module FreudenthalIso
-- {i} (n : ℕ₋₂) (k : ) (t : k ≠ O) (kle : ⟨ k ⟩ ≤T S (n +2+ S n))
-- (X : Ptd i) (cX : is-connected (S (S n)) (fst X)) where
-- open FreudenthalEquiv n (⟨ k ⟩) kle (fst X) (snd X) cX public
-- hom : Ω^-Group k t (⊙Trunc ⟨ k ⟩ X) Trunc-level
-- →ᴳ Ω^-Group k t (⊙Trunc ⟨ k ⟩ (⊙Ω (⊙Susp X))) Trunc-level
-- hom = record {
-- f = fst F;
-- pres-comp = ap^-conc^ k t (decodeN , decodeN-pt) }
-- where F = ap^ k (decodeN , decodeN-pt)
-- iso : Ω^-Group k t (⊙Trunc ⟨ k ⟩ X) Trunc-level
-- ≃ᴳ Ω^-Group k t (⊙Trunc ⟨ k ⟩ (⊙Ω (⊙Susp X))) Trunc-level
-- iso = (hom , is-equiv-ap^ k (decodeN , decodeN-pt) (snd eq))
end end freudenthal
open algebra
definition freudenthal_pequiv (A : Type*) {n k : } [is_conn n A] (H : k ≤ 2 * n)
: ptrunc k A ≃* ptrunc k (Ω (psusp A)) :=
have H' : k ≤[ℕ₋₂] n + n,
by rewrite [mul.comm at H, -algebra.zero_add n at {1}]; exact of_nat_le_of_nat H,
ptrunc_pequiv_ptrunc_of_le H' (freudenthal.pequiv' A n)
definition freudenthal_equiv {A : Type*} {n k : } [is_conn n A] (H : k ≤ 2 * n)
: trunc k A ≃ trunc k (Ω (psusp A)) :=
freudenthal_pequiv A H
namespace sphere
open ops algebra pointed function
definition stability_pequiv (k n : ) (H : k + 2 ≤ 2 * n) : π*[k + 1] (S. (n+1)) ≃* π*[k] (S. n) :=
begin
have H' : k ≤ 2 * pred n,
begin
rewrite [mul_pred_right], change pred (pred (k + 2)) ≤ pred (pred (2 * n)),
apply pred_le_pred, apply pred_le_pred, exact H
end,
have is_conn (of_nat (pred n)) (S. n),
begin
cases n with n,
{ exfalso, exact not_succ_le_zero _ H},
{ esimp, apply is_conn_psphere}
end,
refine pequiv_of_eq (ap (ptrunc 0) (loop_space_succ_eq_in (S. (n+1)) k)) ⬝e* _,
rewrite psphere_succ,
refine !phomotopy_group_pequiv_loop_ptrunc ⬝e* _,
refine loopn_pequiv_loopn k (freudenthal_pequiv _ H')⁻¹ᵉ* ⬝e* _,
exact !phomotopy_group_pequiv_loop_ptrunc⁻¹ᵉ*,
end
--print phomotopy_group_pequiv_loop_ptrunc
--print iterated_loop_ptrunc_pequiv
-- definition to_fun_stability_pequiv (k n : ) (H : k + 3 ≤ 2 * n) --(p : π*[k + 1] (S. (n+1)))
-- : stability_pequiv (k+1) n H = _ ∘ _ ∘ cast (ap (ptrunc 0) (loop_space_succ_eq_in (S. (n+1)) (k+1))) :=
-- sorry
-- definition stability (k n : ) (H : k + 3 ≤ 2 * n) : πg[k+1 +1] (S. (n+1)) = πg[k+1] (S. n) :=
-- begin
-- fapply Group_eq,
-- { refine equiv_of_pequiv (stability_pequiv _ _ _), rewrite succ_add, exact H},
-- { intro g h, esimp, }
-- end
end sphere
/-
changes in book:
proof 8.6.15: also mention that we ignore multiplication
proof 8.4.4: respects points
proof 8.4.8: do k=0 separately
-/

View file

@ -0,0 +1,152 @@
import homotopy.join homotopy.smash
open eq equiv trunc function bool join sphere sphere_index sphere.ops prod
open pointed sigma smash
namespace spherical_fibrations
/- classifying type of spherical fibrations -/
definition BG (n : ) : Type₁ :=
Σ(X : Type₀), ∥ X ≃ S n..-1 ∥
definition pointed_BG [instance] [constructor] (n : ) : pointed (BG n) :=
pointed.mk ⟨ S n..-1 , tr erfl ⟩
definition pBG [constructor] (n : ) : Type* := pointed.mk' (BG n)
definition G (n : ) : Type₁ :=
pt = pt :> BG n
definition G_char (n : ) : G n ≃ (S n..-1 ≃ S n..-1) :=
sorry
definition mirror (n : ) : S n..-1 → G n :=
begin
intro v, apply to_inv (G_char n),
exact sorry
end
/-
Can we give a fibration P : S n → Type, P base = F n = Ω(BF n) = (S. n ≃* S. n)
and total space sigma P ≃ G (n+1) = Ω(BG (n+1)) = (S n.+1 ≃ S .n+1)
Yes, let eval : BG (n+1) → S n be the evaluation map
-/
definition S_of_BG (n : ) : Ω(pBG (n+1)) → S n :=
λ f, f..1 ▸ base
definition BG_succ (n : ) : BG n → BG (n+1) :=
begin
intro X, cases X with X p,
apply sigma.mk (susp X), induction p with f, apply tr,
apply susp.equiv f
end
/- classifying type of pointed spherical fibrations -/
definition BF (n : ) : Type₁ :=
Σ(X : Type*), ∥ X ≃* S. n ∥
definition pointed_BF [instance] [constructor] (n : ) : pointed (BF n) :=
pointed.mk ⟨ S. n , tr pequiv.rfl ⟩
definition pBF [constructor] (n : ) : Type* := pointed.mk' (BF n)
definition BF_succ (n : ) : BF n → BF (n+1) :=
begin
intro X, cases X with X p,
apply sigma.mk (psusp X), induction p with f, apply tr,
apply susp.psusp_equiv f
end
definition BF_of_BG {n : } : BG n → BF n :=
begin
intro X, cases X with X p,
apply sigma.mk (pointed.MK (susp X) susp.north),
induction p with f, apply tr,
apply pequiv_of_equiv (susp.equiv f),
reflexivity
end
definition BG_of_BF {n : } : BF n → BG (n + 1) :=
begin
intro X, cases X with X hX,
apply sigma.mk (carrier X), induction hX with fX,
apply tr, exact fX
end
definition BG_mul {n m : } (X : BG n) (Y : BG m) : BG (n + m) :=
begin
cases X with X pX, cases Y with Y pY,
apply sigma.mk (join X Y),
induction pX with fX, induction pY with fY,
apply tr, rewrite add_sub_one,
exact (join.equiv_closed fX fY) ⬝e (join.spheres n..-1 m..-1)
end
definition BF_mul {n m : } (X : BF n) (Y : BF m) : BF (n + m) :=
begin
cases X with X hX, cases Y with Y hY,
apply sigma.mk (psmash X Y),
induction hX with fX, induction hY with fY, apply tr,
exact sorry -- needs smash.spheres : psmash (S. n) (S. m) ≃ S. (n + m)
end
definition BF_of_BG_mul (n m : ) (X : BG n) (Y : BG m)
: BF_of_BG (BG_mul X Y) = BF_mul (BF_of_BG X) (BF_of_BG Y) :=
sorry
-- Thom spaces
namespace thom
variables {X : Type} {n : } (α : X → BF n)
-- the canonical section of an F-object
protected definition sec (x : X) : carrier (sigma.pr1 (α x)) :=
Point _
open pushout sigma
definition thom_space : Type :=
pushout (λx : X, ⟨x , thom.sec α x⟩) (const X unit.star)
end thom
/-
Things to do:
- Orientability and orientations
* Thom class u ∈ ~Hⁿ(Tξ)
* eventually prove Thom-Isomorphism (Rudyak IV.5.7)
- define BG∞ and BF∞ as colimits of BG n and BF n
- Ω(BF n) = ΩⁿSⁿ₁ + ΩⁿSⁿ₋₁ (self-maps of degree ±1)
- succ_BF n is (n - 2) connected (from Freudenthal)
- pfiber (BG_of_BF n) ≃* S. n
- π₁(BF n)=π₁(BG n)=/2
- double covers BSG and BSF
- O : BF n → BG 1 = Σ(A : Type), ∥ A = bool ∥
- BSG n = sigma O
- π₁(BSG n)=π₁(BSF n)=O
- BSO(n),
- find BF' n : Type₀ with BF' n ≃ BF n etc.
- canonical bundle γₙ : P(n) → P∞=BO(1) → Type₀
prove T(γₙ) = P(n+1)
- BG∞ = BF∞ (in fact = BGL₁(S), the group of units of the sphere spectrum)
- clutching construction:
any f : S n → SG(n) gives S n.+1 → BSG(n) (mut.mut. for O(n),SO(n),etc.)
- all bundles on S 3 are trivial, incl. tangent bundle
- Adams' result on vector fields on spheres:
there are maximally ρ(n)-1 indep.sections of the tangent bundle of S (n-1)
where ρ(n) is the n'th Radon-Hurwitz number.→
-/
-- tangent bundle on S 2:
namespace two_sphere
definition tau : S 2 → BG 2 :=
begin
intro v, induction v with x, do 2 exact pt,
exact sorry
end
end two_sphere
end spherical_fibrations