work on notes

This commit is contained in:
Floris van Doorn 2017-03-09 17:34:30 -05:00
parent b781de8473
commit b61fb7e685

View file

@ -12,6 +12,10 @@
\renewcommand{\epsilon}{\varepsilon}
\newcommand{\tr}{\cdot}
\renewcommand{\o}{\ensuremath{\circ}}
\newcommand{\auxl}{\mathsf{auxl}}
\newcommand{\auxr}{\mathsf{auxr}}
\newcommand{\gluel}{\mathsf{gluel}}
\newcommand{\gluer}{\mathsf{gluer}}
\begin{document}
@ -43,9 +47,7 @@
started with. In diagrams, we will denote pointed homotopies by equalities, but we always mean
pointed homotopies.
\item The type $A\to B$ of pointed maps from $A$ to $B$ is itself pointed, with as basepoint the
constant map $0\equiv0_{A,B}:A\to B$ which has as underlying function $\lam{a:A}b_0$. In these
notes we will not use $0$ for the empty type (since that is not pointed, we will not use the empty
type).
constant map $0\equiv0_{A,B}:A\to B$ which has as underlying function $\lam{a:A}b_0$. We have $0\o g \sim 0$ and $f \o 0 \sim 0$.
\end{rmk}
\begin{lem}
@ -65,17 +67,35 @@
\section{Smash Product}
\begin{lem}\mbox{}
\begin{lem}\mbox{}\label{lem:smash-general}
\begin{itemize}
\item The smash of $A$ and $B$ is the HIT generated by point constructor
$({-},{-}):A\to B \to A\smash B$ and two auxilliary points $\auxl,\auxr:A\smash B$ and path
constructors $\gluel:\prd{a:A}(a,b_0)=\auxl$ and $\gluer:\prd{b:B}(a_0,b)=\auxr$ (the
constructors are given as unpointed maps). $A\smash B$ is pointed with point $(a_0,b_0)$.
\item The smash is functorial: if $f:A\pmap A'$ and $g:B\pmap B'$ then
$f\smash g:A\smash B\pmap A'\smash B'$. We write $A\smash g$ or $f\smash B$ if one of the
functions is the identity function.
\item Smash preserves composition, which gives rise to the interchange law:
$(f' \o f)\smash (g' \o g) \sim f' \smash g' \o f \smash g$
$i:(f' \o f)\smash (g' \o g) \sim f' \smash g' \o f \smash g$
\item If $p:f\sim f'$ and $q:g\sim g'$ then $p\smash q:f\smash g\sim f'\smash g'$. This operation
preserves reflexivities, symmetries and transitivies.
\item $f\smash0\sim0$ and $0\smash g\sim 0$.
\item There are homotopies $f\smash0\sim0$ and $0\smash g\sim 0$ such that the following diagrams
commute for given homotopies $p : f\sim f'$ and $q : g\sim g'$.
\begin{center}
\begin{tikzcd}
f\smash 0 \arrow[rr, equals,"p\smash1"]\arrow[dr,equals] & &
f'\smash 0\arrow[dl,equals] \\
& 0 &
\end{tikzcd}
\qquad
\begin{tikzcd}
0\smash g\arrow[rr, equals,"1\smash q"]\arrow[dr,equals] & &
0\smash g'\arrow[dl,equals] \\
& 0 &
\end{tikzcd}
\end{center}
\end{itemize}
\end{lem}
@ -87,8 +107,8 @@
\begin{center}
\begin{tikzcd}
(f_2 \o f_1)\smash (g_2 \o 0) \arrow[r, equals]\arrow[dd,equals] &
(f_2 \smash g_1)\o (f_1 \smash 0)\arrow[d,equals] \\
& (f_2 \smash g_1)\o 0\arrow[d,equals] \\
(f_2 \smash g_2)\o (f_1 \smash 0)\arrow[d,equals] \\
& (f_2 \smash g_2)\o 0\arrow[d,equals] \\
(f_2 \o f_1)\smash 0 \arrow[r,equals] &
0
\end{tikzcd}
@ -104,8 +124,24 @@
\end{lem}
\begin{proof}
We will only do the case where $g_1\jdeq 0$, the other case is similar (but slightly easier). In this case, we need to show that the following diagram commutes.
Proof to do.
We will only do the case where $g_1\jdeq 0$, i.e. fill the diagram on the left. The other case is
similar (but slightly easier). First apply induction on the paths that $f_2$, $f_1$ and $g_2$
respect the basepoint. In this case $g_2\o0$ is definitionally equal to $0$, and the canonical
proof that $g_2\o 0~0$ is (definitionally) equal to reflexivity. This means that the homotopy
$(f_2 \o f_1)\smash (g_2 \o 0)~(f_2 \o f_1)\smash 0$ is also equal to reflexivity.
For the underlying homotopy, take $x : A_1\smash B_1$. We apply induction on $x$.
Suppose $x\equiv(a,b)$ for $a:A_1$ and $b:B_1$. Then we have to fill the square (denote the basepoints of $A_i$ and $B_i$ by $a_i$ and $b_i$)
\begin{center}
\begin{tikzcd}
(f_2(f_1(a)),g_2(b_2))\arrow[r, equals,"1"]\arrow[dd,equals,"1"] &
(f_2(f_1(a)),g_2(b_2))\arrow[d,equals] \\
& (f_2(a_2),g_2(b_2))\o (f_1 \smash g_1)\arrow[d,equals] \\
(f_2(f_1(a)),y_0) \arrow[r,equals,"1"] &
(x_0,y_0)
\end{tikzcd}
\end{center}
\end{proof}
\begin{thm}\label{thm:smash-functor-right}
@ -138,8 +174,9 @@ which is natural in $A$, $B$ and $C$. (note: $(A\smash C\pmap B\smash C)$ is bot
\end{tikzcd}
\end{center}
Let $k:A\pmap B$. Then as homotopy the naturality in $A$ becomes
$(k\o f)\smash C=k\smash C\o f\smash C$. To prove an equality between pointed maps, we need to give a pointed homotopy, which is given by interchange. To show that this homotopy
is pointed, we need to fill the following square, which follows from \autoref{lem:smash-coh}.
$(k\o f)\smash C=k\smash C\o f\smash C$. To prove an equality between pointed maps, we need to give
a pointed homotopy, which is given by interchange. To show that this homotopy is pointed, we need to
fill the following square (after reducing out the applications of function extensinality), which follows from \autoref{lem:smash-coh}.
\begin{center}
\begin{tikzcd}
(0 \o f)\smash C \arrow[r, equals]\arrow[dd,equals] &
@ -161,20 +198,28 @@ square, which follows from \autoref{lem:smash-coh}.
0
\end{tikzcd}
\end{center}
The naturality in $C$ is harder. For the underlying homotopy we need to show
$B\smash h\o g\smash C=g\smash C'\o A\smash h$. This follows by applying interchange twice:
$$B\smash h\o g\smash C\sim(\idfunc[B]\o g)\smash(h\o\idfunc[C])\sim(g\o\idfunc[A])\smash(\idfunc[C']\o h)\sim g\smash C'\o A\smash h.$$
The naturality in $C$ is a bit harder. For the underlying homotopy we need to show
$B\smash h\o k\smash C=k\smash C'\o A\smash h$. This follows by applying interchange twice:
$$B\smash h\o k\smash C\sim(\idfunc[B]\o k)\smash(h\o\idfunc[C])\sim(k\o\idfunc[A])\smash(\idfunc[C']\o h)\sim k\smash C'\o A\smash h.$$
To show that this homotopy is pointed, we need to fill the following square:
% \begin{center}
% \begin{tikzcd}
% (B\smash h\o g\smash C) \arrow[r, equals]\arrow[dd,equals] &
% (g \smash C)\o (0 \smash C)\arrow[d,equals] \\
% & (g\smash C) \o 0\arrow[d,equals] \\
% 0\smash C \arrow[r,equals] &
% 0
% \end{tikzcd}
% \end{center}
\begin{center}
\begin{tikzcd}
B\smash h\o 0\smash C \arrow[r, equals]\arrow[d,equals] &
(\idfunc[B]\o 0)\smash(h\o\idfunc[C]) \arrow[r, equals]\arrow[d,equals] &
(0\o\idfunc[A])\smash(\idfunc[C']\o h)\arrow[r, equals]\arrow[d,equals] &
0\smash C'\o A\smash h\arrow[d,equals] \\
B\smash h\o 0 \arrow[d,equals] &
0\smash(h\o\idfunc[C]) \arrow[r, equals]\arrow[d,equals] &
0\smash(\idfunc[C']\o h) \arrow[d,equals] &
0\o A\smash h\arrow[d,equals] \\
B\smash h\o 0 \arrow[r, equals] &
0 \arrow[r, equals] &
0 \arrow[r, equals] &
0
\end{tikzcd}
\end{center}
The left and the right squares are filled by \autoref{lem:smash-coh}. The squares in the middle
are filled by (corollaries of) \autoref{lem:smash-general}.
\end{proof}
\section{Adjunction}