compute fibers of postnikov tower
This commit is contained in:
parent
da95ea0acb
commit
b6fa4e8716
1 changed files with 32 additions and 44 deletions
|
@ -565,58 +565,42 @@ namespace EM
|
|||
|
||||
open fiber EM.ops
|
||||
|
||||
-- definition loopn_succ_pfiber_postnikov_map (A : Type*) (k : ℕ) (n : ℕ₋₂) :
|
||||
-- Ω[k+1] (pfiber (postnikov_map A (n.+1))) ≃* Ω[k] (pfiber (postnikov_map (Ω A) n)) :=
|
||||
-- begin
|
||||
-- exact sorry
|
||||
-- end
|
||||
|
||||
-- definition loopn_pfiber_postnikov_map (A : Type*) (n : ℕ) :
|
||||
-- Ω[n] (pfiber (postnikov_map A n)) ≃* EM1 (πg[n+1] A) :=
|
||||
-- begin
|
||||
-- revert A, induction n with n IH: intro A,
|
||||
-- { apply pfiber_postnikov_map_zero },
|
||||
-- exact loopn_succ_pfiber_postnikov_map A n n ⬝e* IH (Ω A) ⬝e*
|
||||
-- EM1_pequiv_EM1 !ghomotopy_group_succ_in⁻¹ᵍ
|
||||
-- end
|
||||
|
||||
-- move
|
||||
|
||||
definition pgroup_of_Group (X : Group) : pgroup X :=
|
||||
pgroup_of_group _ idp
|
||||
|
||||
open prod chain_complex succ_str fin
|
||||
definition isomorphism_of_trivial_LES {A B : Type*} (f : A →* B) (n : ℕ)
|
||||
(k : fin (nat.succ 2)) (HX1 : is_contr (homotopy_groups f (n+1, k)))
|
||||
(HX2 : is_contr (homotopy_groups f (n+2, k))) :
|
||||
Group_LES_of_homotopy_groups f (@S +3ℕ (S (n, k))) ≃g Group_LES_of_homotopy_groups f (S (n, k)) :=
|
||||
begin
|
||||
induction k with k Hk,
|
||||
cases k with k, rotate 1, cases k with k, rotate 1, cases k with k, rotate 1,
|
||||
exfalso, apply lt_le_antisymm Hk, apply le_add_left,
|
||||
all_goals exact let k := fin.mk _ Hk in let x : +3ℕ := (n, k) in let S : +3ℕ → +3ℕ := succ_str.S in
|
||||
let z :=
|
||||
@is_equiv_of_trivial _
|
||||
(LES_of_homotopy_groups f) _
|
||||
(is_exact_LES_of_homotopy_groups f (n+1, k))
|
||||
(is_exact_LES_of_homotopy_groups f (S (n+1, k)))
|
||||
HX1 HX2
|
||||
(pgroup_of_Group (Group_LES_of_homotopy_groups f (S x)))
|
||||
(pgroup_of_Group (Group_LES_of_homotopy_groups f (S (S x))))
|
||||
(homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun f (S x))) in
|
||||
isomorphism.mk (homomorphism_LES_of_homotopy_groups_fun f _) z
|
||||
end
|
||||
-- open prod chain_complex succ_str fin
|
||||
-- definition isomorphism_of_trivial_LES {A B : Type*} (f : A →* B) (n : ℕ)
|
||||
-- (k : fin (nat.succ 2)) (HX1 : is_contr (homotopy_groups f (n+1, k)))
|
||||
-- (HX2 : is_contr (homotopy_groups f (n+2, k))) :
|
||||
-- Group_LES_of_homotopy_groups f (@S +3ℕ (S (n, k))) ≃g Group_LES_of_homotopy_groups f (S (n, k)) :=
|
||||
-- begin
|
||||
-- induction k with k Hk,
|
||||
-- cases k with k, rotate 1, cases k with k, rotate 1, cases k with k, rotate 1,
|
||||
-- exfalso, apply lt_le_antisymm Hk, apply le_add_left,
|
||||
-- all_goals exact let k := fin.mk _ Hk in let x : +3ℕ := (n, k) in let S : +3ℕ → +3ℕ := succ_str.S in
|
||||
-- let z :=
|
||||
-- @is_equiv_of_trivial _
|
||||
-- (LES_of_homotopy_groups f) _
|
||||
-- (is_exact_LES_of_homotopy_groups f (n+1, k))
|
||||
-- (is_exact_LES_of_homotopy_groups f (S (n+1, k)))
|
||||
-- HX1 HX2
|
||||
-- (pgroup_of_Group (Group_LES_of_homotopy_groups f (S x)))
|
||||
-- (pgroup_of_Group (Group_LES_of_homotopy_groups f (S (S x))))
|
||||
-- (homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun f (S x))) in
|
||||
-- isomorphism.mk (homomorphism_LES_of_homotopy_groups_fun f _) z
|
||||
-- end
|
||||
|
||||
|
||||
definition pfiber_postnikov_map_zero (A : Type*) :
|
||||
pfiber (postnikov_map A 0) ≃* EM1 (πg[1] A) :=
|
||||
begin
|
||||
symmetry, apply EM1_pequiv,
|
||||
{ symmetry, note z := isomorphism_of_trivial_LES (postnikov_map A 0) 1 0
|
||||
(trivial_homotopy_group_of_is_trunc (ptrunc 0 A) !zero_lt_succ)
|
||||
(trivial_homotopy_group_of_is_trunc (ptrunc 0 A) !zero_lt_succ), exact sorry
|
||||
-- rexact isomorphism_of_equiv (equiv_of_isomorphism z) sorry
|
||||
},
|
||||
{ symmetry, refine _ ⬝g ghomotopy_group_ptrunc 1 A,
|
||||
exact chain_complex.LES_isomorphism_of_trivial_cod _ _
|
||||
(trivial_homotopy_group_of_is_trunc _ !zero_lt_one)
|
||||
(trivial_homotopy_group_of_is_trunc _ (zero_lt_succ 1)) },
|
||||
{ apply @is_conn_fun_trunc_elim, apply is_conn_fun_tr },
|
||||
{ apply is_trunc_pfiber }
|
||||
end
|
||||
|
@ -624,9 +608,13 @@ namespace EM
|
|||
definition pfiber_postnikov_map_succ (A : Type*) (n : ℕ) :
|
||||
pfiber (postnikov_map A (n+1)) ≃* EMadd1 (πag[n+2] A) (n+1) :=
|
||||
begin
|
||||
apply pequiv_EMadd1_of_loopn_pequiv_EM1,
|
||||
{ exact sorry },
|
||||
{ apply is_conn_fun_trunc_elim, apply is_conn_fun_tr }
|
||||
symmetry, apply EMadd1_pequiv,
|
||||
{ refine _ ⬝g ghomotopy_group_ptrunc (n+2) A,
|
||||
exact chain_complex.LES_isomorphism_of_trivial_cod _ _
|
||||
(trivial_homotopy_group_of_is_trunc _ (self_lt_succ (n+1)))
|
||||
(trivial_homotopy_group_of_is_trunc _ (le_succ _)) },
|
||||
{ apply is_conn_fun_trunc_elim, apply is_conn_fun_tr },
|
||||
{ apply is_trunc_pfiber }
|
||||
end
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue