define Z-modules from abelian groups

This commit is contained in:
Floris van Doorn 2017-05-19 14:55:13 -04:00
parent 61ad085373
commit b953850362
3 changed files with 39 additions and 20 deletions

View file

@ -21,15 +21,29 @@ structure is_short_exact_t {A B : Type} {C : Type*} (f : A → B) (g : B → C)
(ker_in_im : Π(b:B), (g b = pt) → fiber f b) (ker_in_im : Π(b:B), (g b = pt) → fiber f b)
(is_surj : is_split_surjective g) (is_surj : is_split_surjective g)
definition is_short_exact_of_is_exact {X A B C Y : Type*} definition is_short_exact_of_is_exact {X A B C Y : Group}
(k : X → A) (f : A → B) (g : B → C) (l : C → Y) (k : X →g A) (f : A →g B) (g : B →g C) (l : C →g Y)
(hX : is_contr X) (hY : is_contr Y) (hX : is_contr X) (hY : is_contr Y)
(kf : is_exact k f) (fg : is_exact f g) (gl : is_exact g l) : is_short_exact f g := (kf : is_exact k f) (fg : is_exact f g) (gl : is_exact g l) : is_short_exact f g :=
sorry begin
constructor,
{ apply to_is_embedding_homomorphism, intro a p,
induction is_exact.ker_in_im kf a p with x q,
exact q⁻¹ ⬝ ap k !is_prop.elim ⬝ to_respect_one k },
{ exact is_exact.im_in_ker fg },
{ exact is_exact.ker_in_im fg },
{ intro c, exact is_exact.ker_in_im gl c !is_prop.elim },
end
definition is_short_exact_equiv {A B A' B' : Type} {C C' : Type*} definition is_short_exact_equiv {A B A' B' : Type} {C C' : Type*}
{f' : A' → B'} {g' : B' → C'} (f : A → B) (g : B → C) {f' : A' → B'} {g' : B' → C'} (f : A → B) (g : B → C)
(eA : A ≃ A') (eB : B ≃ B') (eC : C ≃* C') (eA : A ≃ A') (eB : B ≃ B') (eC : C ≃* C')
(h : hsquare f f' eA eB) (h : hsquare g g' eB eC) (h : hsquare f f' eA eB) (h : hsquare g g' eB eC)
(H : is_short_exact f' g') : is_short_exact f g := (H : is_short_exact f' g') : is_short_exact f g :=
sorry begin
constructor,
{ exact sorry },
{ exact sorry },
{ exact sorry },
{ exact sorry }
end

View file

@ -7,7 +7,7 @@ Modules prod vector spaces over a ring.
(We use "left_module," which is more precise, because "module" is a keyword.) (We use "left_module," which is more precise, because "module" is a keyword.)
-/ -/
import algebra.field ..move_to_lib .is_short_exact import algebra.field ..move_to_lib .is_short_exact algebra.group_power
open is_trunc pointed function sigma eq algebra prod is_equiv equiv group open is_trunc pointed function sigma eq algebra prod is_equiv equiv group
structure has_scalar [class] (F V : Type) := structure has_scalar [class] (F V : Type) :=
@ -183,21 +183,17 @@ definition left_module_AddAbGroup_of_LeftModule [instance] {R : Ring} (M : LeftM
left_module R (AddAbGroup_of_LeftModule M) := left_module R (AddAbGroup_of_LeftModule M) :=
LeftModule.struct M LeftModule.struct M
definition left_module_of_ab_group (G : Type) [gG : add_ab_group G] (R : Type) [ring R] definition left_module_of_ab_group {G : Type} [gG : add_ab_group G] {R : Type} [ring R]
(smul : R → G → G) (smul : R → G → G)
(h1 : Π (r : R) (x y : G), smul r (x + y) = (smul r x + smul r y)) (h1 : Π (r : R) (x y : G), smul r (x + y) = (smul r x + smul r y))
(h2 : Π (r s : R) (x : G), smul (r + s) x = (smul r x + smul s x)) (h2 : Π (r s : R) (x : G), smul (r + s) x = (smul r x + smul s x))
(h3 : Π r s x, smul (r * s) x = smul r (smul s x)) (h3 : Π r s x, smul (r * s) x = smul r (smul s x))
(h4 : Π x, smul 1 x = x) : left_module R G := (h4 : Π x, smul 1 x = x) : left_module R G :=
begin left_module.mk smul _ add add.assoc 0 zero_add add_zero neg add.left_inv add.comm h1 h2 h3 h4
cases gG with Gs Gm Gh1 G1 Gh2 Gh3 Gi Gh4 Gh5,
exact left_module.mk smul Gs Gm Gh1 G1 Gh2 Gh3 Gi Gh4 Gh5 h1 h2 h3 h4
end
definition LeftModule_of_AddAbGroup {R : Ring} (G : AddAbGroup) (smul : R → G → G) definition LeftModule_of_AddAbGroup {R : Ring} (G : AddAbGroup) (smul : R → G → G)
(h1 h2 h3 h4) : LeftModule R := (h1 h2 h3 h4) : LeftModule R :=
LeftModule.mk G (left_module_of_ab_group G R smul h1 h2 h3 h4) LeftModule.mk G (left_module_of_ab_group smul h1 h2 h3 h4)
section section
variables {R : Ring} {M M₁ M₂ M₃ : LeftModule R} variables {R : Ring} {M M₁ M₂ M₃ : LeftModule R}
@ -400,12 +396,14 @@ end
(g : B →lm C) (g : B →lm C)
(h : @is_short_exact _ _ (pType.mk _ 0) f g) (h : @is_short_exact _ _ (pType.mk _ 0) f g)
local abbreviation g_of_lm := @group_homomorphism_of_lm_homomorphism
definition short_exact_mod_of_is_exact {X A B C Y : LeftModule R} definition short_exact_mod_of_is_exact {X A B C Y : LeftModule R}
(k : X →lm A) (f : A →lm B) (g : B →lm C) (l : C →lm Y) (k : X →lm A) (f : A →lm B) (g : B →lm C) (l : C →lm Y)
(hX : is_contr X) (hY : is_contr Y) (hX : is_contr X) (hY : is_contr Y)
(kf : is_exact_mod k f) (fg : is_exact_mod f g) (gl : is_exact_mod g l) : (kf : is_exact_mod k f) (fg : is_exact_mod f g) (gl : is_exact_mod g l) :
short_exact_mod A B C := short_exact_mod A B C :=
short_exact_mod.mk f g (is_short_exact_of_is_exact k f g l hX hY kf fg gl) short_exact_mod.mk f g
(is_short_exact_of_is_exact (g_of_lm k) (g_of_lm f) (g_of_lm g) (g_of_lm l) hX hY kf fg gl)
definition short_exact_mod_isomorphism {A B A' B' C C' : LeftModule R} definition short_exact_mod_isomorphism {A B A' B' C C' : LeftModule R}
(eA : A ≃lm A') (eB : B ≃lm B') (eC : C ≃lm C') (eA : A ≃lm A') (eB : B ≃lm B') (eC : C ≃lm C')
@ -422,4 +420,17 @@ end
end end
section int
open int
definition left_module_int_of_ab_group [constructor] (A : Type) [add_ab_group A] : left_module r A :=
left_module_of_ab_group imul imul_add add_imul mul_imul one_imul
definition LeftModule_int_of_AbGroup [constructor] (A : AddAbGroup) : LeftModule r :=
LeftModule.mk A (left_module_int_of_ab_group A)
definition lm_hom_int.mk [constructor] {A B : AbGroup} (φ : A →g B) :
LeftModule_int_of_AbGroup A →lm LeftModule_int_of_AbGroup B :=
lm_homomorphism_of_group_homomorphism φ (to_respect_imul φ)
end int
end left_module end left_module

View file

@ -2,19 +2,13 @@
-- Author: Floris van Doorn -- Author: Floris van Doorn
import .graded ..homotopy.spectrum .product_group --types.int.order import .graded ..homotopy.spectrum .product_group
open algebra is_trunc left_module is_equiv equiv eq function nat open algebra is_trunc left_module is_equiv equiv eq function nat
-- move -- move
section section
open group int chain_complex pointed succ_str open group int chain_complex pointed succ_str
definition LeftModule_int_of_AbGroup [constructor] (A : AbGroup) : LeftModule r :=
LeftModule.mk A (left_module.mk sorry sorry sorry sorry 1 sorry sorry sorry sorry sorry sorry sorry sorry sorry)
definition lm_hom_int.mk [constructor] {A B : AbGroup} (φ : A →g B) :
LeftModule_int_of_AbGroup A →lm LeftModule_int_of_AbGroup B :=
homomorphism.mk φ sorry
definition is_exact_of_is_exact_at {N : succ_str} {A : chain_complex N} {n : N} definition is_exact_of_is_exact_at {N : succ_str} {A : chain_complex N} {n : N}
(H : is_exact_at A n) : is_exact (cc_to_fn A (S n)) (cc_to_fn A n) := (H : is_exact_at A n) : is_exact (cc_to_fn A (S n)) (cc_to_fn A n) :=