small cleanup on modules
This commit is contained in:
parent
798a57e546
commit
bdf0d1bb0e
2 changed files with 8 additions and 6 deletions
|
@ -401,7 +401,7 @@ end
|
||||||
structure short_exact_mod (A B C : LeftModule R) :=
|
structure short_exact_mod (A B C : LeftModule R) :=
|
||||||
(f : A →lm B)
|
(f : A →lm B)
|
||||||
(g : B →lm C)
|
(g : B →lm C)
|
||||||
(h : @is_short_exact _ _ (pType.mk _ 0) f g)
|
(h : @is_short_exact A B C f g)
|
||||||
|
|
||||||
local abbreviation g_of_lm := @group_homomorphism_of_lm_homomorphism
|
local abbreviation g_of_lm := @group_homomorphism_of_lm_homomorphism
|
||||||
definition short_exact_mod_of_is_exact {X A B C Y : LeftModule R}
|
definition short_exact_mod_of_is_exact {X A B C Y : LeftModule R}
|
||||||
|
@ -421,6 +421,7 @@ end
|
||||||
(λa, to_right_inv (equiv_of_isomorphism eB) _) (λb, to_right_inv (equiv_of_isomorphism eC) _)
|
(λa, to_right_inv (equiv_of_isomorphism eB) _) (λb, to_right_inv (equiv_of_isomorphism eC) _)
|
||||||
(short_exact_mod.h H))
|
(short_exact_mod.h H))
|
||||||
|
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
|
@ -97,8 +97,6 @@ namespace left_module
|
||||||
graded_image_elim (graded_homology_intro d d ∘gm graded_hom_lift j j_lemma1) j_lemma2
|
graded_image_elim (graded_homology_intro d d ∘gm graded_hom_lift j j_lemma1) j_lemma2
|
||||||
-- degree deg j - deg i
|
-- degree deg j - deg i
|
||||||
|
|
||||||
-- mk_out_in (deg f) (deg g)
|
|
||||||
|
|
||||||
lemma k_lemma1 ⦃x : I⦄ (m : E x) (p : d x m = 0) : image (i ← (deg k x)) (k x m) :=
|
lemma k_lemma1 ⦃x : I⦄ (m : E x) (p : d x m = 0) : image (i ← (deg k x)) (k x m) :=
|
||||||
gmod_ker_in_im (exact_couple.ij X) (k x m) p
|
gmod_ker_in_im (exact_couple.ij X) (k x m) p
|
||||||
|
|
||||||
|
@ -381,7 +379,7 @@ namespace left_module
|
||||||
definition Dinfstable {x y : I} {r : ℕ} (Hr : B' y ≤ r) (p : x = y) : Dinf y ≃lm D (page r) x :=
|
definition Dinfstable {x y : I} {r : ℕ} (Hr : B' y ≤ r) (p : x = y) : Dinf y ≃lm D (page r) x :=
|
||||||
by symmetry; induction p; induction Hr with r Hr IH; reflexivity; exact Dstable Hr ⬝lm IH
|
by symmetry; induction p; induction Hr with r Hr IH; reflexivity; exact Dstable Hr ⬝lm IH
|
||||||
|
|
||||||
parameters {x : I}
|
parameters (x : I)
|
||||||
|
|
||||||
definition r (n : ℕ) : ℕ :=
|
definition r (n : ℕ) : ℕ :=
|
||||||
max (max (B (deg (j X) (deg (k X) x)) + n + 1) (B3 ((deg (i X))^[n] x)))
|
max (max (B (deg (j X) (deg (k X) x)) + n + 1) (B3 ((deg (i X))^[n] x)))
|
||||||
|
@ -475,11 +473,12 @@ namespace pointed
|
||||||
exact π→g[n+2] f
|
exact π→g[n+2] f
|
||||||
end
|
end
|
||||||
|
|
||||||
definition homotopy_group_conn_functor : Π(n : ℤ) {A B : Type*[1]} (f : A →* B), πc[n] A →g πc[n] B
|
definition homotopy_group_conn_functor :
|
||||||
|
Π(n : ℤ) {A B : Type*[1]} (f : A →* B), πc[n] A →g πc[n] B
|
||||||
| (of_nat n) A B f := homotopy_group_conn_nat_functor n f
|
| (of_nat n) A B f := homotopy_group_conn_nat_functor n f
|
||||||
| (-[1+ n]) A B f := homomorphism_of_is_contr_right _ _
|
| (-[1+ n]) A B f := homomorphism_of_is_contr_right _ _
|
||||||
|
|
||||||
notation `π→ag'[`:95 n:0 `]`:0 := homotopy_group_conn_functor n
|
notation `π→c[`:95 n:0 `]`:0 := homotopy_group_conn_functor n
|
||||||
|
|
||||||
section
|
section
|
||||||
open prod prod.ops fiber
|
open prod prod.ops fiber
|
||||||
|
@ -493,6 +492,8 @@ namespace pointed
|
||||||
definition E_sequence : graded_module rℤ I :=
|
definition E_sequence : graded_module rℤ I :=
|
||||||
λv, LeftModule_int_of_AbGroup (πc[v.2] (pconntype.mk (pfiber (f (v.1))) !Hf pt))
|
λv, LeftModule_int_of_AbGroup (πc[v.2] (pconntype.mk (pfiber (f (v.1))) !Hf pt))
|
||||||
|
|
||||||
|
/- first need LES of these connected homotopy groups -/
|
||||||
|
|
||||||
-- definition exact_couple_sequence : exact_couple rℤ I :=
|
-- definition exact_couple_sequence : exact_couple rℤ I :=
|
||||||
-- exact_couple.mk D_sequence E_sequence sorry sorry sorry sorry sorry sorry
|
-- exact_couple.mk D_sequence E_sequence sorry sorry sorry sorry sorry sorry
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue