small cleanup on modules

This commit is contained in:
Floris van Doorn 2017-05-23 00:32:03 -04:00
parent 798a57e546
commit bdf0d1bb0e
2 changed files with 8 additions and 6 deletions

View file

@ -401,7 +401,7 @@ end
structure short_exact_mod (A B C : LeftModule R) := structure short_exact_mod (A B C : LeftModule R) :=
(f : A →lm B) (f : A →lm B)
(g : B →lm C) (g : B →lm C)
(h : @is_short_exact _ _ (pType.mk _ 0) f g) (h : @is_short_exact A B C f g)
local abbreviation g_of_lm := @group_homomorphism_of_lm_homomorphism local abbreviation g_of_lm := @group_homomorphism_of_lm_homomorphism
definition short_exact_mod_of_is_exact {X A B C Y : LeftModule R} definition short_exact_mod_of_is_exact {X A B C Y : LeftModule R}
@ -421,6 +421,7 @@ end
(λa, to_right_inv (equiv_of_isomorphism eB) _) (λb, to_right_inv (equiv_of_isomorphism eC) _) (λa, to_right_inv (equiv_of_isomorphism eB) _) (λb, to_right_inv (equiv_of_isomorphism eC) _)
(short_exact_mod.h H)) (short_exact_mod.h H))
end end
end end

View file

@ -97,8 +97,6 @@ namespace left_module
graded_image_elim (graded_homology_intro d d ∘gm graded_hom_lift j j_lemma1) j_lemma2 graded_image_elim (graded_homology_intro d d ∘gm graded_hom_lift j j_lemma1) j_lemma2
-- degree deg j - deg i -- degree deg j - deg i
-- mk_out_in (deg f) (deg g)
lemma k_lemma1 ⦃x : I⦄ (m : E x) (p : d x m = 0) : image (i ← (deg k x)) (k x m) := lemma k_lemma1 ⦃x : I⦄ (m : E x) (p : d x m = 0) : image (i ← (deg k x)) (k x m) :=
gmod_ker_in_im (exact_couple.ij X) (k x m) p gmod_ker_in_im (exact_couple.ij X) (k x m) p
@ -381,7 +379,7 @@ namespace left_module
definition Dinfstable {x y : I} {r : } (Hr : B' y ≤ r) (p : x = y) : Dinf y ≃lm D (page r) x := definition Dinfstable {x y : I} {r : } (Hr : B' y ≤ r) (p : x = y) : Dinf y ≃lm D (page r) x :=
by symmetry; induction p; induction Hr with r Hr IH; reflexivity; exact Dstable Hr ⬝lm IH by symmetry; induction p; induction Hr with r Hr IH; reflexivity; exact Dstable Hr ⬝lm IH
parameters {x : I} parameters (x : I)
definition r (n : ) : := definition r (n : ) : :=
max (max (B (deg (j X) (deg (k X) x)) + n + 1) (B3 ((deg (i X))^[n] x))) max (max (B (deg (j X) (deg (k X) x)) + n + 1) (B3 ((deg (i X))^[n] x)))
@ -475,11 +473,12 @@ namespace pointed
exact π→g[n+2] f exact π→g[n+2] f
end end
definition homotopy_group_conn_functor : Π(n : ) {A B : Type*[1]} (f : A →* B), πc[n] A →g πc[n] B definition homotopy_group_conn_functor :
Π(n : ) {A B : Type*[1]} (f : A →* B), πc[n] A →g πc[n] B
| (of_nat n) A B f := homotopy_group_conn_nat_functor n f | (of_nat n) A B f := homotopy_group_conn_nat_functor n f
| (-[1+ n]) A B f := homomorphism_of_is_contr_right _ _ | (-[1+ n]) A B f := homomorphism_of_is_contr_right _ _
notation `π→ag'[`:95 n:0 `]`:0 := homotopy_group_conn_functor n notation `π→c[`:95 n:0 `]`:0 := homotopy_group_conn_functor n
section section
open prod prod.ops fiber open prod prod.ops fiber
@ -493,6 +492,8 @@ namespace pointed
definition E_sequence : graded_module r I := definition E_sequence : graded_module r I :=
λv, LeftModule_int_of_AbGroup (πc[v.2] (pconntype.mk (pfiber (f (v.1))) !Hf pt)) λv, LeftModule_int_of_AbGroup (πc[v.2] (pconntype.mk (pfiber (f (v.1))) !Hf pt))
/- first need LES of these connected homotopy groups -/
-- definition exact_couple_sequence : exact_couple r I := -- definition exact_couple_sequence : exact_couple r I :=
-- exact_couple.mk D_sequence E_sequence sorry sorry sorry sorry sorry sorry -- exact_couple.mk D_sequence E_sequence sorry sorry sorry sorry sorry sorry