more notes

This commit is contained in:
Floris van Doorn 2017-03-24 09:27:16 -04:00
parent 5d6598c0ae
commit c0d4bc2cc1

View file

@ -215,6 +215,8 @@ f'\smash 0\arrow[dl,equals] \\
If $x$ varies over $\gluel_a$ the proof is very similar. Only in the end we need to fill the
following cube instead (TODO).
To show that this homotopy is pointed, (TODO)
\end{proof}
\begin{thm}\label{thm:smash-functor-right}
@ -357,6 +359,13 @@ $$(A\pmap B\pmap C)\lpmap{({-})\smash B}(A\smash B\pmap (B\pmap C)\smash B)\lpma
$$\inv{e}_{A,B,C}:(A\smash B\pmap C)\lpmap{B\pmap({-})}((B\pmap A\smash B)\pmap (B\pmap
C))\lpmap{\eta\pmap(B\pmap C)}(A\pmap B\pmap C).$$ It is easy to show that $e$ and $\inv{e}$ are
inverses as unpointed maps from the unit-counit laws and naturality of $\eta$ and $\epsilon$.
% For $f : A\pmap B\pmap C$ we have
% \begin{align*}
% \inv{e}(e(f))&\equiv(\eta\pmap(B\pmap C))\o (B\pmap((A\smash B\pmap\epsilon)\of\smash B))\\
% &= (\eta\pmap(B\pmap C))\o (B\pmap(A\smash B\pmap\epsilon))\o(B\pmapf\smash B)\\
% % &= (\eta\pmap(B\pmap C))\o (B\pmap(A\smash B\pmap\epsilon))\o(B\pmapf\smash B)\\
% \end{align*}
\end{proof}
\begin{lem}\label{e-natural}
$e$ is natural in $A$, $B$ and $C$.