short exact sequences
This commit is contained in:
parent
2d995b0347
commit
cde8333151
1 changed files with 16 additions and 6 deletions
|
@ -13,7 +13,7 @@ open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum
|
|||
|
||||
structure is_exact {A B C : AbGroup} (f : A →g B) (g : B →g C) :=
|
||||
( im_in_ker : Π(a:A), g (f a) = 1)
|
||||
( ker_in_im : Π(b:B), (g b = 1) → ∃(a:A), f a = b)
|
||||
( ker_in_im : Π(b:B), (g b = 1) → image_subgroup f b)
|
||||
|
||||
structure SES (A B C : AbGroup) :=
|
||||
( f : A →g B)
|
||||
|
@ -29,16 +29,26 @@ structure hom_SES {A B C A' B' C' : AbGroup} (ses : SES A B C) (ses' : SES A' B'
|
|||
( htpy1 : hB ∘g (SES.f ses) ~ (SES.f ses') ∘g hA)
|
||||
( htpy2 : hC ∘g (SES.g ses) ~ (SES.g ses') ∘g hB)
|
||||
|
||||
definition quotient_SES {A B C : AbGroup} (ses : SES A B C) : C ≃g quotient_ab_group (image_subgroup (SES.f ses)) :=
|
||||
begin
|
||||
fapply ab_group_first_iso_thm B C (SES.g ses),
|
||||
end
|
||||
--definition quotient_SES {A B C : AbGroup} (ses : SES A B C) :
|
||||
-- quotient_ab_group (image_subgroup (SES.f ses)) ≃g C :=
|
||||
-- begin
|
||||
-- fapply ab_group_first_iso_thm B C (SES.g ses),
|
||||
-- end
|
||||
|
||||
definition right_extend_SES {A B C A' B' C' : AbGroup}
|
||||
(ses : SES A B C) (ses' : SES A' B' C')
|
||||
(hA : A →g A') (hB : B →g B') (htpy1 : hB ∘g (SES.f ses) ~ (SES.f ses') ∘g hA) : C →g C' :=
|
||||
begin
|
||||
|
||||
refine _ ∘g (codomain_surjection_is_quotient (SES.g ses) (SES.Hg ses))⁻¹ᵍ,
|
||||
refine (codomain_surjection_is_quotient (SES.g ses') (SES.Hg ses')) ∘g _,
|
||||
fapply ab_group_quotient_homomorphism B B' (kernel_subgroup (SES.g ses)) (kernel_subgroup (SES.g ses')) hB,
|
||||
intro b,
|
||||
intro K,
|
||||
have k : trunctype.carrier (image_subgroup (SES.f ses) b), from is_exact.ker_in_im (SES.ex ses) b K,
|
||||
induction k, induction a with a p,
|
||||
rewrite [p⁻¹],
|
||||
rewrite [htpy1 a],
|
||||
fapply is_exact.im_in_ker (SES.ex ses') (hA a),
|
||||
end
|
||||
|
||||
definition is_differential {B : AbGroup} (d : B →g B) := Π(b:B), d (d b) = 1
|
||||
|
|
Loading…
Reference in a new issue