remove spaces at end of lines
This commit is contained in:
parent
741e585ca0
commit
ceee305a60
1 changed files with 41 additions and 41 deletions
|
@ -5,29 +5,29 @@ open eq pointed sigma is_equiv equiv fiber algebra group is_trunc function prod
|
|||
namespace category
|
||||
|
||||
section univ_subcat
|
||||
parameters {C : Precategory} {D : Category} (F : functor C D) (p : is_embedding F) (q : fully_faithful F)
|
||||
parameters {C : Precategory} {D : Category} (F : functor C D) (p : is_embedding F) (q : fully_faithful F)
|
||||
variables {a b : carrier C}
|
||||
include p q
|
||||
|
||||
definition eq_equiv_iso_of_fully_faithful : a = b ≃ a ≅ b :=
|
||||
definition eq_equiv_iso_of_fully_faithful : a = b ≃ a ≅ b :=
|
||||
equiv.mk !ap !p -- a = b ≃ F a = F b
|
||||
⬝e equiv.mk iso_of_eq !iso_of_path_equiv -- F a = F b ≃ F a ≅ F b
|
||||
⬝e equiv.symm !iso_equiv_F_iso_F -- F a ≅ F b ≃ a ≅ b
|
||||
|
||||
definition eq_equiv_iso_of_fully_faithful_homot : @eq_equiv_iso_of_fully_faithful a b ~ iso_of_eq :=
|
||||
begin
|
||||
intro r,
|
||||
esimp [eq_equiv_iso_of_fully_faithful],
|
||||
refine _ ⬝ left_inv (iso_equiv_F_iso_F F _ _) _,
|
||||
apply ap (inv (to_fun !iso_equiv_F_iso_F)),
|
||||
apply symm,
|
||||
induction r,
|
||||
intro r,
|
||||
esimp [eq_equiv_iso_of_fully_faithful],
|
||||
refine _ ⬝ left_inv (iso_equiv_F_iso_F F _ _) _,
|
||||
apply ap (inv (to_fun !iso_equiv_F_iso_F)),
|
||||
apply symm,
|
||||
induction r,
|
||||
apply respect_refl
|
||||
end
|
||||
|
||||
definition is_univalent_domain_of_fully_faithful_embedding : is_univalent C :=
|
||||
definition is_univalent_domain_of_fully_faithful_embedding : is_univalent C :=
|
||||
begin
|
||||
intros,
|
||||
intros,
|
||||
apply homotopy_closed eq_equiv_iso_of_fully_faithful eq_equiv_iso_of_fully_faithful_homot
|
||||
end
|
||||
end univ_subcat
|
||||
|
@ -117,47 +117,47 @@ begin repeat (assumption | induction a with a b | intro a | fconstructor) end
|
|||
|
||||
definition Group_sigma.{u} : Group.{u} ≃ Σ A : Type.{u}, group A :=
|
||||
begin
|
||||
fconstructor, exact λ a, dpair (Group.carrier a) (Group.struct' a),
|
||||
fconstructor, exact λ a, dpair (Group.carrier a) (Group.struct' a),
|
||||
repeat (assumption | induction a with a b | intro a | fconstructor)
|
||||
end
|
||||
|
||||
definition group.sigma_char.{u} (A : Type) :
|
||||
definition group.sigma_char.{u} (A : Type) :
|
||||
group.{u} A ≃ Σ (v : (A → A → A) × (A → A) × A), Group_props v :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{intro g, induction g with m s ma o om mo i mi,
|
||||
{intro g, induction g with m s ma o om mo i mi,
|
||||
repeat (fconstructor; do 2 try assumption), },
|
||||
{intro v, induction v with x v, repeat induction x with y x,
|
||||
{intro v, induction v with x v, repeat induction x with y x,
|
||||
repeat induction v with x v, constructor, repeat assumption },
|
||||
{ intro, repeat induction b with b x, induction x,
|
||||
{ intro, repeat induction b with b x, induction x,
|
||||
repeat induction x_1 with v x_1, reflexivity },
|
||||
{ intro v, repeat induction v with x v, reflexivity },
|
||||
end
|
||||
|
||||
definition Group.sigma_char2.{u} :
|
||||
definition Group.sigma_char2.{u} :
|
||||
Group.{u} ≃ Σ(A : Type.{u}) (v : (A → A → A) × (A → A) × A), Group_props v :=
|
||||
Group_sigma ⬝e sigma_equiv_sigma_right group.sigma_char
|
||||
|
||||
definition ab_group.sigma_char.{u} (A : Type) :
|
||||
definition ab_group.sigma_char.{u} (A : Type) :
|
||||
ab_group.{u} A ≃ Σ (v : (A → A → A) × (A → A) × A), AbGroup_props v :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{intro g, induction g with m s ma o om mo i mi,
|
||||
{intro g, induction g with m s ma o om mo i mi,
|
||||
repeat (fconstructor; do 2 try assumption), },
|
||||
{intro v, induction v with x v, repeat induction x with y x,
|
||||
{intro v, induction v with x v, repeat induction x with y x,
|
||||
repeat induction v with x v, constructor, repeat assumption },
|
||||
{ intro, repeat induction b with b x, induction x,
|
||||
{ intro, repeat induction b with b x, induction x,
|
||||
repeat induction x_1 with v x_1, reflexivity },
|
||||
{ intro v, repeat induction v with x v, reflexivity },
|
||||
end
|
||||
|
||||
definition AbGroup_Group_props {A : Type} (v : (A → A → A) × (A → A) × A) :
|
||||
definition AbGroup_Group_props {A : Type} (v : (A → A → A) × (A → A) × A) :
|
||||
AbGroup_props v ≃ Group_props v × ∀ a b, v.1 a b = v.1 b a :=
|
||||
begin
|
||||
fapply equiv.MK, induction v with m v, induction v with i e,
|
||||
intro, fconstructor, repeat induction a with b a, repeat (fconstructor; assumption), assumption,
|
||||
exact a.2.2.2.2.2, intro, induction a, repeat induction v with b v, repeat induction a with b a,
|
||||
repeat (fconstructor; assumption), assumption, intro b,
|
||||
exact a.2.2.2.2.2, intro, induction a, repeat induction v with b v, repeat induction a with b a,
|
||||
repeat (fconstructor; assumption), assumption, intro b,
|
||||
assert H : is_prop (Group_props v × ∀ a b, v.1 a b = v.1 b a),
|
||||
apply is_trunc_prod, assert K : is_set A, induction b, induction v, induction a_1, induction a_2_1, assumption,
|
||||
exact _, apply is_prop.elim, intro, apply is_prop.elim,
|
||||
|
@ -170,13 +170,13 @@ sigma_equiv_sigma_right (λa, !sigma.equiv_prod⁻¹ᵉ) ⬝e !sigma_assoc_equiv
|
|||
|
||||
definition ab_group_equiv_group_comm (A : Type) : ab_group A ≃ Σ (g : group A), ∀ a b : A, a * b = b * a :=
|
||||
begin
|
||||
refine !ab_group.sigma_char ⬝e _,
|
||||
refine sigma_equiv_sigma_right AbGroup_Group_props ⬝e _,
|
||||
refine sigma_prod_equiv_sigma_sigma ⬝e _,
|
||||
apply equiv.symm, apply sigma_equiv_sigma !group.sigma_char, intros,
|
||||
refine !ab_group.sigma_char ⬝e _,
|
||||
refine sigma_equiv_sigma_right AbGroup_Group_props ⬝e _,
|
||||
refine sigma_prod_equiv_sigma_sigma ⬝e _,
|
||||
apply equiv.symm, apply sigma_equiv_sigma !group.sigma_char, intros,
|
||||
induction a, reflexivity
|
||||
end
|
||||
|
||||
|
||||
section
|
||||
local attribute group.to_has_mul group.to_has_inv [coercion]
|
||||
|
||||
|
@ -234,7 +234,7 @@ end
|
|||
begin
|
||||
refine !sigma_pathover_equiv_of_is_prop ⬝e _,
|
||||
induction G with G g, induction H with H h,
|
||||
esimp [sigma_char2] at p,
|
||||
esimp [sigma_char2] at p,
|
||||
esimp [sigma_functor] at p, esimp [Group_sigma] at *,
|
||||
induction p,
|
||||
refine !pathover_idp ⬝e _,
|
||||
|
@ -285,8 +285,8 @@ induction p,
|
|||
intro p, induction p, fapply iso_eq, apply homomorphism_eq, reflexivity
|
||||
end
|
||||
|
||||
definition AbGroup_to_Group [constructor] : functor (Precategory.mk AbGroup _)
|
||||
(Category.mk Group category_Group)
|
||||
definition AbGroup_to_Group [constructor] : functor (Precategory.mk AbGroup _)
|
||||
(Category.mk Group category_Group)
|
||||
:= mk (λ x : AbGroup, (x : Group)) (λ a b x, x) (λ x, rfl) begin intros, reflexivity end
|
||||
|
||||
|
||||
|
@ -304,7 +304,7 @@ definition group_comm_to_group (A : Type) : (Σ g : group A, ∀ (a b : A), a*b
|
|||
definition is_embedding_group_comm_to_group (A : Type) : is_embedding (group_comm_to_group A) :=
|
||||
begin
|
||||
unfold group_comm_to_group,
|
||||
intros, induction a,
|
||||
intros, induction a,
|
||||
assert H : is_set A, induction a, assumption,
|
||||
assert H :is_set (group A), apply is_set_group,
|
||||
induction a', fconstructor, intros, apply sigma_eq,
|
||||
|
@ -312,21 +312,21 @@ induction a', fconstructor, intros, apply sigma_eq,
|
|||
apply is_prop.elim, intros, apply is_prop.elim, intros, apply is_prop.elim
|
||||
end
|
||||
|
||||
definition ab_group_to_group_homot (A : Type) :
|
||||
@ab_group_to_group A ~ group_comm_to_group A ∘ ab_group_equiv_group_comm A :=
|
||||
definition ab_group_to_group_homot (A : Type) :
|
||||
@ab_group_to_group A ~ group_comm_to_group A ∘ ab_group_equiv_group_comm A :=
|
||||
begin intro, induction x, reflexivity end
|
||||
|
||||
definition is_embedding_ab_group_to_group (A : Type) : is_embedding (@ab_group_to_group A) :=
|
||||
begin
|
||||
apply is_embedding_homotopy_closed_rev (ab_group_to_group_homot A), apply is_embedding_compose,
|
||||
apply is_embedding_homotopy_closed_rev (ab_group_to_group_homot A), apply is_embedding_compose,
|
||||
exact is_embedding_group_comm_to_group A, apply is_embedding_of_is_equiv
|
||||
end
|
||||
|
||||
definition is_embedding_total_of_is_embedding_fiber {A} {B C : A → Type} {f : Π a, B a → C a}
|
||||
: (∀ a, is_embedding (f a)) → is_embedding (total f) :=
|
||||
begin
|
||||
intro e, fapply is_embedding_of_is_prop_fiber, intro p, induction p with a c,
|
||||
assert H : (fiber (total f) ⟨a, c⟩)≃ fiber (f a) c,
|
||||
intro e, fapply is_embedding_of_is_prop_fiber, intro p, induction p with a c,
|
||||
assert H : (fiber (total f) ⟨a, c⟩)≃ fiber (f a) c,
|
||||
apply fiber_total_equiv,
|
||||
assert H2 : is_prop (fiber (f a) c),
|
||||
apply is_prop_fiber_of_is_embedding,
|
||||
|
@ -339,14 +339,14 @@ begin intro g, induction g, reflexivity end
|
|||
definition is_embedding_AbGroup_to_Group : is_embedding AbGroup_to_Group :=
|
||||
begin
|
||||
apply is_embedding_homotopy_closed_rev AbGroup_to_Group_homot,
|
||||
apply is_embedding_compose,
|
||||
apply is_embedding_of_is_equiv,
|
||||
apply is_embedding_compose,
|
||||
apply is_embedding_total_of_is_embedding_fiber is_embedding_ab_group_to_group,
|
||||
apply is_embedding_of_is_equiv,
|
||||
apply is_embedding_compose,
|
||||
apply is_embedding_total_of_is_embedding_fiber is_embedding_ab_group_to_group,
|
||||
apply is_embedding_of_is_equiv
|
||||
end
|
||||
|
||||
definition is_univalent_AbGroup : is_univalent precategory_AbGroup :=
|
||||
definition is_univalent_AbGroup : is_univalent precategory_AbGroup :=
|
||||
begin
|
||||
apply is_univalent_domain_of_fully_faithful_embedding AbGroup_to_Group is_embedding_AbGroup_to_Group, intros, apply is_equiv_id
|
||||
end
|
||||
|
|
Loading…
Reference in a new issue