higher groups: add is_trunc_ppi_of_is_conn
This commit is contained in:
parent
2f957b7828
commit
cf25666beb
1 changed files with 9 additions and 3 deletions
|
@ -17,13 +17,19 @@ universe variable u
|
||||||
the higher group paper -/
|
the higher group paper -/
|
||||||
namespace hide
|
namespace hide
|
||||||
open pushout
|
open pushout
|
||||||
definition connect_intro_pequiv {k : ℕ} {X : Type*} (Y : Type*) (H : is_conn k X) :
|
definition connect_intro_pequiv {k : ℕ} {B : Type*} (A : Type*) (H : is_conn k B) :
|
||||||
ppmap X (connect k Y) ≃* ppmap X Y :=
|
ppmap B (connect k A) ≃* ppmap B A :=
|
||||||
is_conn.connect_intro_pequiv Y H
|
is_conn.connect_intro_pequiv A H
|
||||||
|
|
||||||
definition is_conn_fun_prod_of_wedge (n m : ℕ) (A B : Type*)
|
definition is_conn_fun_prod_of_wedge (n m : ℕ) (A B : Type*)
|
||||||
[cA : is_conn n A] [cB : is_conn m B] : is_conn_fun (m + n) (@prod_of_wedge A B) :=
|
[cA : is_conn n A] [cB : is_conn m B] : is_conn_fun (m + n) (@prod_of_wedge A B) :=
|
||||||
is_conn_fun_prod_of_wedge n m A B
|
is_conn_fun_prod_of_wedge n m A B
|
||||||
|
|
||||||
|
definition is_trunc_ppi_of_is_conn (k n : ℕ) (X : Type*) (H : is_conn (k.-1) X)
|
||||||
|
(Y : X → Type*) (H3 : Πx, is_trunc (k + n) (Y x)) :
|
||||||
|
is_trunc n (Π*(x : X), Y x) :=
|
||||||
|
is_conn.is_trunc_ppi_of_is_conn _ (k.-2) _ _ (le_of_eq (sub_one_add_plus_two_sub_one k n)⁻¹) _ H3
|
||||||
|
|
||||||
end hide
|
end hide
|
||||||
|
|
||||||
/- The k-groupal n-types.
|
/- The k-groupal n-types.
|
||||||
|
|
Loading…
Reference in a new issue