Start proving that the homology theory associated to a spectrum satisfies the ES axioms
This commit is contained in:
parent
9274ba04c9
commit
daf3472468
1 changed files with 53 additions and 0 deletions
|
@ -70,4 +70,57 @@ namespace homology
|
|||
|
||||
end
|
||||
|
||||
/- homology theory associated to a spectrum -/
|
||||
definition homology (X : Type*) (E : spectrum) (n : ℤ) : AbGroup :=
|
||||
shomotopy_group n (smash_spectrum X E)
|
||||
|
||||
definition parametrized_homology {X : Type*} (E : X → spectrum) (n : ℤ) : AbGroup :=
|
||||
sorry
|
||||
|
||||
definition ordinary_homology [reducible] (X : Type*) (G : AbGroup) (n : ℤ) : AbGroup :=
|
||||
homology X (EM_spectrum G) n
|
||||
|
||||
definition ordinary_homology_Z [reducible] (X : Type*) (n : ℤ) : AbGroup :=
|
||||
ordinary_homology X agℤ n
|
||||
|
||||
notation `H_` n `[`:0 X:0 `, ` E:0 `]`:0 := homology X E n
|
||||
notation `H_` n `[`:0 X:0 `]`:0 := ordinary_homology_Z X n
|
||||
notation `pH_` n `[`:0 binders `, ` r:(scoped E, parametrized_homology E n) `]`:0 := r
|
||||
|
||||
definition unpointed_homology (X : Type) (E : spectrum) (n : ℤ) : AbGroup :=
|
||||
H_ n[X₊, E]
|
||||
|
||||
definition homology_functor [constructor] {X Y : Type*} {E F : spectrum} (f : X →* Y) (g : E →ₛ F) (n : ℤ) : homology X E n →g homology Y F n :=
|
||||
shomotopy_group_fun n (smash_spectrum_fun f g)
|
||||
|
||||
definition homology_theory_spectrum.{u} [constructor] (E : spectrum.{u}) : homology_theory.{u} :=
|
||||
begin
|
||||
refine homology_theory.mk _ _ _ _ _ _ _ _,
|
||||
exact (λn X, H_ n[X, E]),
|
||||
exact (λn X Y f, homology_functor f (sid E) n),
|
||||
exact sorry, -- Hid is uninteresting but potentially very hard to prove
|
||||
exact sorry,
|
||||
exact sorry,
|
||||
exact sorry,
|
||||
exact sorry,
|
||||
exact sorry
|
||||
-- sorry
|
||||
-- sorry
|
||||
-- sorry
|
||||
-- sorry
|
||||
-- sorry
|
||||
-- sorry
|
||||
-- (λn A, H^n[A, Y])
|
||||
-- (λn A B f, cohomology_isomorphism f Y n)
|
||||
-- (λn A, cohomology_isomorphism_refl A Y n)
|
||||
-- (λn A B f, cohomology_functor f Y n)
|
||||
-- (λn A B f g p, cohomology_functor_phomotopy p Y n)
|
||||
-- (λn A B f x, cohomology_functor_phomotopy_refl f Y n x)
|
||||
-- (λn A x, cohomology_functor_pid A Y n x)
|
||||
-- (λn A B C g f x, cohomology_functor_pcompose g f Y n x)
|
||||
-- (λn A, cohomology_psusp A Y n)
|
||||
-- (λn A B f, cohomology_psusp_natural f Y n)
|
||||
-- (λn A B f, cohomology_exact f Y n)
|
||||
-- (λn I A H, spectrum_additive H A Y n)
|
||||
end
|
||||
end homology
|
||||
|
|
Loading…
Reference in a new issue