redefine maxm2 in strunc
This commit is contained in:
parent
057980ca1f
commit
dce2832ead
2 changed files with 35 additions and 26 deletions
|
@ -5,19 +5,18 @@ open trunc_index nat
|
|||
|
||||
namespace int
|
||||
|
||||
definition maxm2 : ℤ → ℕ₋₂ :=
|
||||
λ n, int.cases_on n trunc_index.of_nat
|
||||
(λ m, nat.cases_on m -1 (λ a, -2))
|
||||
|
||||
attribute maxm2 [unfold 1]
|
||||
/-
|
||||
The function from integers to truncation indices which sends positive numbers to themselves, and negative
|
||||
numbers to negative 2. In particular -1 is sent to -2, but since we only work with pointed types, that
|
||||
doesn't matter for us -/
|
||||
definition maxm2 [unfold 1] : ℤ → ℕ₋₂ :=
|
||||
λ n, int.cases_on n trunc_index.of_nat (λk, -2)
|
||||
|
||||
definition maxm2_le_maxm0 (n : ℤ) : maxm2 n ≤ max0 n :=
|
||||
begin
|
||||
induction n with n n,
|
||||
{ exact le.tr_refl n },
|
||||
{ cases n with n,
|
||||
{ exact le.step (le.tr_refl -1) },
|
||||
{ exact minus_two_le 0 } }
|
||||
{ exact minus_two_le 0 }
|
||||
end
|
||||
|
||||
definition max0_le_of_le {n : ℤ} {m : ℕ} (H : n ≤ of_nat m)
|
||||
|
@ -43,14 +42,11 @@ definition loop_ptrunc_maxm2_pequiv (k : ℤ) (X : Type*) :
|
|||
begin
|
||||
induction k with k k,
|
||||
{ exact loop_ptrunc_pequiv k X },
|
||||
{ cases k with k,
|
||||
{ exact loop_ptrunc_pequiv -1 X },
|
||||
{ cases k with k,
|
||||
{ exact loop_ptrunc_pequiv -2 X },
|
||||
{ exact loop_pequiv_punit_of_is_set (pType.mk (trunc -2 X) (tr pt))
|
||||
⬝e* (pequiv_punit_of_is_contr
|
||||
(pType.mk (trunc -2 (Point X = Point X)) (tr idp))
|
||||
(is_trunc_trunc -2 (Point X = Point X)))⁻¹ᵉ* } } }
|
||||
{ refine _ ⬝e* (pequiv_punit_of_is_contr _ !is_trunc_trunc)⁻¹ᵉ*,
|
||||
apply @loop_pequiv_punit_of_is_set,
|
||||
cases k with k,
|
||||
{ change is_set (trunc 0 X), apply _ },
|
||||
{ change is_set (trunc -2 X), apply _ }}
|
||||
end
|
||||
|
||||
definition is_trunc_of_is_trunc_maxm2 (k : ℤ) (X : Type)
|
||||
|
@ -73,14 +69,12 @@ definition is_trunc_maxm2_loop (A : pType) (k : ℤ)
|
|||
begin
|
||||
intro H, induction k with k k,
|
||||
{ apply is_trunc_loop, exact H },
|
||||
{ cases k with k,
|
||||
{ apply is_trunc_loop, exact H},
|
||||
{ apply is_trunc_loop, cases k with k,
|
||||
{ exact H },
|
||||
{ apply is_trunc_succ, exact H } } }
|
||||
{ apply is_contr_loop, cases k with k,
|
||||
{ exact H },
|
||||
{ have H2 : is_contr A, from H, apply _ } }
|
||||
end
|
||||
|
||||
definition is_strunc (k : ℤ) (E : spectrum) : Type :=
|
||||
definition is_strunc [reducible] (k : ℤ) (E : spectrum) : Type :=
|
||||
Π (n : ℤ), is_trunc (maxm2 (k + n)) (E n)
|
||||
|
||||
definition is_strunc_change_int {k l : ℤ} (E : spectrum) (p : k = l)
|
||||
|
@ -95,6 +89,10 @@ definition is_trunc_maxm2_change_int {k l : ℤ} (X : pType) (p : k = l)
|
|||
: is_trunc (maxm2 k) X → is_trunc (maxm2 l) X :=
|
||||
by induction p; exact id
|
||||
|
||||
definition strunc_functor [constructor] (k : ℤ) {E F : spectrum} (f : E →ₛ F) :
|
||||
strunc k E →ₛ strunc k F :=
|
||||
smap.mk (λn, ptrunc_functor (maxm2 (k + n)) (f n)) sorry
|
||||
|
||||
definition is_strunc_EM_spectrum (G : AbGroup)
|
||||
: is_strunc 0 (EM_spectrum G) :=
|
||||
begin
|
||||
|
@ -102,13 +100,19 @@ begin
|
|||
{ -- case ≥ 0
|
||||
apply is_trunc_maxm2_change_int (EM G n) (zero_add n)⁻¹,
|
||||
apply is_trunc_EM },
|
||||
{ induction n with n IH,
|
||||
{ change is_contr (EM_spectrum G (-[1+n])),
|
||||
induction n with n IH,
|
||||
{ -- case = -1
|
||||
apply is_trunc_loop, exact ab_group.is_set_carrier G },
|
||||
apply is_contr_loop, exact is_trunc_EM G 0 },
|
||||
{ -- case < -1
|
||||
apply is_trunc_maxm2_loop, exact IH }}
|
||||
apply is_trunc_loop, apply is_trunc_succ, exact IH }}
|
||||
end
|
||||
|
||||
definition strunc_elim [constructor] {k : ℤ} {E F : spectrum} (f : E →ₛ F)
|
||||
(H : is_strunc k F) : strunc k E →ₛ F :=
|
||||
smap.mk (λn, ptrunc.elim (maxm2 (k + n)) (f n))
|
||||
(λn, sorry)
|
||||
|
||||
definition trivial_shomotopy_group_of_is_strunc (E : spectrum)
|
||||
{n k : ℤ} (K : is_strunc n E) (H : n < k)
|
||||
: is_contr (πₛ[k] E) :=
|
||||
|
|
|
@ -192,8 +192,11 @@ namespace pointed
|
|||
psquare (pequiv_ap B p) (pequiv_ap C p) (f a) (f a') :=
|
||||
begin induction p, exact phrfl end
|
||||
|
||||
definition is_contr_loop (A : Type*) [is_set A] : is_contr (Ω A) :=
|
||||
is_contr.mk idp (λa, !is_prop.elim)
|
||||
|
||||
definition loop_pequiv_punit_of_is_set (X : Type*) [is_set X] : Ω X ≃* punit :=
|
||||
pequiv_punit_of_is_contr _ (is_contr_of_inhabited_prop pt)
|
||||
pequiv_punit_of_is_contr _ (is_contr_loop X)
|
||||
|
||||
definition loop_punit : Ω punit ≃* punit :=
|
||||
loop_pequiv_punit_of_is_set punit
|
||||
|
@ -202,4 +205,6 @@ namespace pointed
|
|||
f ~* g :=
|
||||
phomotopy.mk (λa, !eq_of_is_contr) !eq_of_is_contr
|
||||
|
||||
|
||||
|
||||
end pointed
|
||||
|
|
Loading…
Reference in a new issue