Spectral/homotopy/strunc.hlean
2017-06-30 15:16:53 +01:00

133 lines
4.4 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import .spectrum .EM
-- TODO move this
open trunc_index nat
namespace int
/-
The function from integers to truncation indices which sends positive numbers to themselves, and negative
numbers to negative 2. In particular -1 is sent to -2, but since we only work with pointed types, that
doesn't matter for us -/
definition maxm2 [unfold 1] : → ℕ₋₂ :=
λ n, int.cases_on n trunc_index.of_nat (λk, -2)
definition maxm2_le_maxm0 (n : ) : maxm2 n ≤ max0 n :=
begin
induction n with n n,
{ exact le.tr_refl n },
{ exact minus_two_le 0 }
end
definition max0_le_of_le {n : } {m : } (H : n ≤ of_nat m)
: nat.le (max0 n) m :=
begin
induction n with n n,
{ exact le_of_of_nat_le_of_nat H },
{ exact nat.zero_le m }
end
end int
open int trunc eq is_trunc lift unit pointed equiv is_equiv algebra EM
namespace spectrum
definition ptrunc_maxm2_change_int {k l : } (X : Type*) (p : k = l)
: ptrunc (maxm2 k) X ≃* ptrunc (maxm2 l) X :=
pequiv_ap (λ n, ptrunc (maxm2 n) X) p
definition loop_ptrunc_maxm2_pequiv (k : ) (X : Type*) :
Ω (ptrunc (maxm2 (k+1)) X) ≃* ptrunc (maxm2 k) (Ω X) :=
begin
induction k with k k,
{ exact loop_ptrunc_pequiv k X },
{ refine _ ⬝e* (pequiv_punit_of_is_contr _ !is_trunc_trunc)⁻¹ᵉ*,
apply @loop_pequiv_punit_of_is_set,
cases k with k,
{ change is_set (trunc 0 X), apply _ },
{ change is_set (trunc -2 X), apply _ }}
end
definition is_trunc_of_is_trunc_maxm2 (k : ) (X : Type)
: is_trunc (maxm2 k) X → is_trunc (max0 k) X :=
λ H, @is_trunc_of_le X _ _ (maxm2_le_maxm0 k) H
definition strunc [constructor] (k : ) (E : spectrum) : spectrum :=
spectrum.MK (λ(n : ), ptrunc (maxm2 (k + n)) (E n))
(λ(n : ), ptrunc_pequiv_ptrunc (maxm2 (k + n)) (equiv_glue E n)
⬝e* (loop_ptrunc_maxm2_pequiv (k + n) (E (n+1)))⁻¹ᵉ*
⬝e* (loop_pequiv_loop
(ptrunc_maxm2_change_int _ (add.assoc k n 1))))
definition strunc_change_int [constructor] {k l : } (E : spectrum) (p : k = l) :
strunc k E →ₛ strunc l E :=
begin induction p, reflexivity end
definition is_trunc_maxm2_loop (A : pType) (k : )
: is_trunc (maxm2 (k + 1)) A → is_trunc (maxm2 k) (Ω A) :=
begin
intro H, induction k with k k,
{ apply is_trunc_loop, exact H },
{ apply is_contr_loop, cases k with k,
{ exact H },
{ have H2 : is_contr A, from H, apply _ } }
end
definition is_strunc [reducible] (k : ) (E : spectrum) : Type :=
Π (n : ), is_trunc (maxm2 (k + n)) (E n)
definition is_strunc_change_int {k l : } (E : spectrum) (p : k = l)
: is_strunc k E → is_strunc l E :=
begin induction p, exact id end
definition is_strunc_strunc (k : ) (E : spectrum)
: is_strunc k (strunc k E) :=
λ n, is_trunc_trunc (maxm2 (k + n)) (E n)
definition is_trunc_maxm2_change_int {k l : } (X : pType) (p : k = l)
: is_trunc (maxm2 k) X → is_trunc (maxm2 l) X :=
by induction p; exact id
definition strunc_functor [constructor] (k : ) {E F : spectrum} (f : E →ₛ F) :
strunc k E →ₛ strunc k F :=
smap.mk (λn, ptrunc_functor (maxm2 (k + n)) (f n)) sorry
definition is_strunc_EM_spectrum (G : AbGroup)
: is_strunc 0 (EM_spectrum G) :=
begin
intro n, induction n with n n,
{ -- case ≥ 0
apply is_trunc_maxm2_change_int (EM G n) (zero_add n)⁻¹,
apply is_trunc_EM },
{ change is_contr (EM_spectrum G (-[1+n])),
induction n with n IH,
{ -- case = -1
apply is_contr_loop, exact is_trunc_EM G 0 },
{ -- case < -1
apply is_trunc_loop, apply is_trunc_succ, exact IH }}
end
definition strunc_elim [constructor] {k : } {E F : spectrum} (f : E →ₛ F)
(H : is_strunc k F) : strunc k E →ₛ F :=
smap.mk (λn, ptrunc.elim (maxm2 (k + n)) (f n))
(λn, sorry)
definition trivial_shomotopy_group_of_is_strunc (E : spectrum)
{n k : } (K : is_strunc n E) (H : n < k)
: is_contr (πₛ[k] E) :=
let m := n + (2 - k) in
have I : m < 2, from
calc
m = (2 - k) + n : int.add_comm n (2 - k)
... < (2 - k) + k : add_lt_add_left H (2 - k)
... = 2 : sub_add_cancel 2 k,
@trivial_homotopy_group_of_is_trunc (E (2 - k)) (max0 m) 2
(is_trunc_of_is_trunc_maxm2 m (E (2 - k)) (K (2 - k)))
(nat.succ_le_succ (max0_le_of_le (le_sub_one_of_lt I)))
definition str [constructor] (k : ) (E : spectrum) : E →ₛ strunc k E :=
smap.mk (λ n, ptr (maxm2 (k + n)) (E n))
(λ n, sorry)
end spectrum