Spectral/homotopy/strunc.hlean

134 lines
4.4 KiB
Text
Raw Normal View History

import .spectrum .EM
-- TODO move this
2017-06-29 19:06:47 +00:00
open trunc_index nat
namespace int
2017-06-30 14:14:55 +00:00
/-
The function from integers to truncation indices which sends positive numbers to themselves, and negative
numbers to negative 2. In particular -1 is sent to -2, but since we only work with pointed types, that
doesn't matter for us -/
definition maxm2 [unfold 1] : → ℕ₋₂ :=
λ n, int.cases_on n trunc_index.of_nat (λk, -2)
2017-06-29 19:06:47 +00:00
definition maxm2_le_maxm0 (n : ) : maxm2 n ≤ max0 n :=
begin
induction n with n n,
{ exact le.tr_refl n },
2017-06-30 14:14:55 +00:00
{ exact minus_two_le 0 }
2017-06-29 19:06:47 +00:00
end
definition max0_le_of_le {n : } {m : } (H : n ≤ of_nat m)
: nat.le (max0 n) m :=
begin
induction n with n n,
{ exact le_of_of_nat_le_of_nat H },
{ exact nat.zero_le m }
end
end int
open int trunc eq is_trunc lift unit pointed equiv is_equiv algebra EM
namespace spectrum
2017-06-29 19:06:47 +00:00
definition ptrunc_maxm2_change_int {k l : } (X : Type*) (p : k = l)
: ptrunc (maxm2 k) X ≃* ptrunc (maxm2 l) X :=
pequiv_ap (λ n, ptrunc (maxm2 n) X) p
2017-06-29 19:06:47 +00:00
definition loop_ptrunc_maxm2_pequiv (k : ) (X : Type*) :
Ω (ptrunc (maxm2 (k+1)) X) ≃* ptrunc (maxm2 k) (Ω X) :=
begin
induction k with k k,
2017-06-29 19:06:47 +00:00
{ exact loop_ptrunc_pequiv k X },
2017-06-30 14:14:55 +00:00
{ refine _ ⬝e* (pequiv_punit_of_is_contr _ !is_trunc_trunc)⁻¹ᵉ*,
apply @loop_pequiv_punit_of_is_set,
cases k with k,
{ change is_set (trunc 0 X), apply _ },
{ change is_set (trunc -2 X), apply _ }}
end
2017-06-29 19:06:47 +00:00
definition is_trunc_of_is_trunc_maxm2 (k : ) (X : Type)
: is_trunc (maxm2 k) X → is_trunc (max0 k) X :=
λ H, @is_trunc_of_le X _ _ (maxm2_le_maxm0 k) H
2017-06-28 14:21:11 +00:00
definition strunc [constructor] (k : ) (E : spectrum) : spectrum :=
2017-06-29 19:06:47 +00:00
spectrum.MK (λ(n : ), ptrunc (maxm2 (k + n)) (E n))
(λ(n : ), ptrunc_pequiv_ptrunc (maxm2 (k + n)) (equiv_glue E n)
⬝e* (loop_ptrunc_maxm2_pequiv (k + n) (E (n+1)))⁻¹ᵉ*
⬝e* (loop_pequiv_loop
(ptrunc_maxm2_change_int _ (add.assoc k n 1))))
2017-06-28 14:21:11 +00:00
definition strunc_change_int [constructor] {k l : } (E : spectrum) (p : k = l) :
strunc k E →ₛ strunc l E :=
begin induction p, reflexivity end
2017-06-29 19:06:47 +00:00
definition is_trunc_maxm2_loop (A : pType) (k : )
: is_trunc (maxm2 (k + 1)) A → is_trunc (maxm2 k) (Ω A) :=
2017-06-28 14:21:11 +00:00
begin
2017-06-29 19:06:47 +00:00
intro H, induction k with k k,
{ apply is_trunc_loop, exact H },
2017-06-30 14:14:55 +00:00
{ apply is_contr_loop, cases k with k,
{ exact H },
{ have H2 : is_contr A, from H, apply _ } }
end
2017-06-30 14:14:55 +00:00
definition is_strunc [reducible] (k : ) (E : spectrum) : Type :=
2017-06-29 19:06:47 +00:00
Π (n : ), is_trunc (maxm2 (k + n)) (E n)
2017-06-28 14:21:11 +00:00
definition is_strunc_change_int {k l : } (E : spectrum) (p : k = l)
: is_strunc k E → is_strunc l E :=
begin induction p, exact id end
definition is_strunc_strunc (k : ) (E : spectrum)
: is_strunc k (strunc k E) :=
2017-06-29 19:06:47 +00:00
λ n, is_trunc_trunc (maxm2 (k + n)) (E n)
definition is_trunc_maxm2_change_int {k l : } (X : pType) (p : k = l)
: is_trunc (maxm2 k) X → is_trunc (maxm2 l) X :=
by induction p; exact id
2017-06-28 14:21:11 +00:00
2017-06-30 14:14:55 +00:00
definition strunc_functor [constructor] (k : ) {E F : spectrum} (f : E →ₛ F) :
strunc k E →ₛ strunc k F :=
smap.mk (λn, ptrunc_functor (maxm2 (k + n)) (f n)) sorry
2017-06-28 14:21:11 +00:00
definition is_strunc_EM_spectrum (G : AbGroup)
: is_strunc 0 (EM_spectrum G) :=
begin
intro n, induction n with n n,
{ -- case ≥ 0
2017-06-29 19:06:47 +00:00
apply is_trunc_maxm2_change_int (EM G n) (zero_add n)⁻¹,
2017-06-28 14:21:11 +00:00
apply is_trunc_EM },
2017-06-30 14:14:55 +00:00
{ change is_contr (EM_spectrum G (-[1+n])),
induction n with n IH,
2017-06-28 14:21:11 +00:00
{ -- case = -1
2017-06-30 14:14:55 +00:00
apply is_contr_loop, exact is_trunc_EM G 0 },
2017-06-28 14:21:11 +00:00
{ -- case < -1
2017-06-30 14:14:55 +00:00
apply is_trunc_loop, apply is_trunc_succ, exact IH }}
2017-06-28 14:21:11 +00:00
end
2017-06-30 14:14:55 +00:00
definition strunc_elim [constructor] {k : } {E F : spectrum} (f : E →ₛ F)
(H : is_strunc k F) : strunc k E →ₛ F :=
smap.mk (λn, ptrunc.elim (maxm2 (k + n)) (f n))
(λn, sorry)
2017-06-28 14:21:11 +00:00
definition trivial_shomotopy_group_of_is_strunc (E : spectrum)
{n k : } (K : is_strunc n E) (H : n < k)
: is_contr (πₛ[k] E) :=
let m := n + (2 - k) in
have I : m < 2, from
calc
m = (2 - k) + n : int.add_comm n (2 - k)
... < (2 - k) + k : add_lt_add_left H (2 - k)
... = 2 : sub_add_cancel 2 k,
@trivial_homotopy_group_of_is_trunc (E (2 - k)) (max0 m) 2
2017-06-29 19:06:47 +00:00
(is_trunc_of_is_trunc_maxm2 m (E (2 - k)) (K (2 - k)))
(nat.succ_le_succ (max0_le_of_le (le_sub_one_of_lt I)))
2017-06-28 14:21:11 +00:00
definition str [constructor] (k : ) (E : spectrum) : E →ₛ strunc k E :=
2017-06-29 19:06:47 +00:00
smap.mk (λ n, ptr (maxm2 (k + n)) (E n))
(λ n, sorry)
end spectrum