add logic and some facts about sets
This commit is contained in:
parent
ae5399b820
commit
e4f4536080
2 changed files with 114 additions and 22 deletions
57
logic.hlean
Normal file
57
logic.hlean
Normal file
|
@ -0,0 +1,57 @@
|
|||
/-
|
||||
Copyright (c) 2017 Jeremy Avigad. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Jeremy Avigad
|
||||
-/
|
||||
import types.trunc
|
||||
open funext eq trunc is_trunc prod sum
|
||||
|
||||
--reserve prefix `¬`:40
|
||||
--reserve prefix `~`:40
|
||||
--reserve infixr ` ∧ `:35
|
||||
--reserve infixr ` /\ `:35
|
||||
--reserve infixr ` \/ `:30
|
||||
--reserve infixr ` ∨ `:30
|
||||
--reserve infix ` <-> `:20
|
||||
--reserve infix ` ↔ `:20
|
||||
|
||||
namespace logic
|
||||
|
||||
section
|
||||
open trunc_index
|
||||
|
||||
definition propext {p q : Prop} (h : p ↔ q) : p = q :=
|
||||
tua (equiv_of_iff_of_is_prop h)
|
||||
|
||||
end
|
||||
|
||||
definition false : Prop := trunctype.mk empty _
|
||||
|
||||
definition false.elim {A : Type} (h : false) : A := empty.elim h
|
||||
|
||||
definition true : Prop := trunctype.mk unit _
|
||||
|
||||
definition true.intro : true := unit.star
|
||||
|
||||
definition trivial : true := unit.star
|
||||
|
||||
definition and (p q : Prop) : Prop := tprod p q
|
||||
|
||||
infixr ` ∧ ` := and
|
||||
infixr ` /\ ` := and
|
||||
|
||||
definition and.intro {p q : Prop} (h₁ : p) (h₂ : q) : and p q := prod.mk h₁ h₂
|
||||
|
||||
definition and.left {p q : Prop} (h : p ∧ q) : p := prod.pr1 h
|
||||
|
||||
definition and.right {p q : Prop} (h : p ∧ q) : q := prod.pr2 h
|
||||
|
||||
definition not (p : Prop) : Prop := trunctype.mk (p → empty) _
|
||||
|
||||
prefix `~` := not
|
||||
|
||||
definition or.inl := @or.intro_left
|
||||
|
||||
definition or.inr := @or.intro_right
|
||||
|
||||
end logic
|
79
set.hlean
79
set.hlean
|
@ -3,21 +3,11 @@ Copyright (c) 2017 Jeremy Avigad. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Jeremy Avigad
|
||||
-/
|
||||
import types.trunc
|
||||
open funext eq trunc is_trunc
|
||||
import types.trunc .logic
|
||||
open funext eq trunc is_trunc logic
|
||||
|
||||
definition set (X : Type) := X → Prop
|
||||
|
||||
section
|
||||
open trunc_index
|
||||
|
||||
definition propext {p q : Prop} (h : p ↔ q) : p = q :=
|
||||
tua (equiv_of_iff_of_is_prop h)
|
||||
|
||||
end
|
||||
|
||||
definition tempty {n : trunc_index} : (n.+1)-Type := trunctype.mk empty _
|
||||
|
||||
namespace set
|
||||
|
||||
variable {X : Type}
|
||||
|
@ -54,25 +44,24 @@ assume h₁ h₂, h₁ _ h₂
|
|||
|
||||
/- empty set -/
|
||||
|
||||
definition empty : set X := λx, tempty
|
||||
definition empty : set X := λx, false
|
||||
notation `∅` := empty
|
||||
|
||||
theorem not_mem_empty (x : X) : ¬ (x ∈ ∅) :=
|
||||
assume H : x ∈ ∅, H
|
||||
|
||||
theorem mem_empty_eq (x : X) : x ∈ ∅ = tempty := rfl
|
||||
theorem mem_empty_eq (x : X) : x ∈ ∅ = false := rfl
|
||||
|
||||
/-
|
||||
theorem eq_empty_of_forall_not_mem {s : set X} (H : ∀ x, x ∉ s) : s = ∅ :=
|
||||
ext (take x, iff.intro
|
||||
(assume xs, absurd xs (H x))
|
||||
(assume xe, absurd xe (not_mem_empty _)))
|
||||
(assume xe, absurd xe (not_mem_empty x)))
|
||||
|
||||
theorem ne_empty_of_mem {s : set X} {x : X} (H : x ∈ s) : s ≠ ∅ :=
|
||||
begin intro Hs, rewrite Hs at H, apply not_mem_empty _ H end
|
||||
begin intro Hs, rewrite Hs at H, apply not_mem_empty x H end
|
||||
|
||||
theorem empty_subset (s : set X) : ∅ ⊆ s :=
|
||||
take x, assume H, false.elim H
|
||||
take x, assume H, empty.elim H
|
||||
|
||||
theorem eq_empty_of_subset_empty {s : set X} (H : s ⊆ ∅) : s = ∅ :=
|
||||
subset.antisymm H (empty_subset s)
|
||||
|
@ -80,9 +69,55 @@ subset.antisymm H (empty_subset s)
|
|||
theorem subset_empty_iff (s : set X) : s ⊆ ∅ ↔ s = ∅ :=
|
||||
iff.intro eq_empty_of_subset_empty (take xeq, by rewrite xeq; apply subset.refl ∅)
|
||||
|
||||
lemma bounded_forall_empty_iff {P : X → Prop} :
|
||||
(∀₀x∈∅, P x) ↔ true :=
|
||||
iff.intro (take H, true.intro) (take H, by contradiction)
|
||||
-/
|
||||
/- universal set -/
|
||||
|
||||
definition univ : set X := λx, true
|
||||
|
||||
theorem mem_univ (x : X) : x ∈ univ := trivial
|
||||
|
||||
theorem mem_univ_eq (x : X) : x ∈ univ = true := rfl
|
||||
|
||||
theorem empty_ne_univ [h : inhabited X] : (empty : set X) ≠ univ :=
|
||||
assume H : empty = univ,
|
||||
absurd (mem_univ (inhabited.value h)) (eq.rec_on H (not_mem_empty (arbitrary X)))
|
||||
|
||||
theorem subset_univ (s : set X) : s ⊆ univ := λ x H, unit.star
|
||||
|
||||
theorem eq_univ_of_univ_subset {s : set X} (H : univ ⊆ s) : s = univ :=
|
||||
eq_of_subset_of_subset (subset_univ s) H
|
||||
|
||||
theorem eq_univ_of_forall {s : set X} (H : ∀ x, x ∈ s) : s = univ :=
|
||||
ext (take x, iff.intro (assume H', unit.star) (assume H', H x))
|
||||
|
||||
|
||||
|
||||
/- set-builder notation -/
|
||||
|
||||
-- {x : X | P}
|
||||
definition set_of (P : X → Prop) : set X := P
|
||||
notation `{` binder ` | ` r:(scoped:1 P, set_of P) `}` := r
|
||||
|
||||
-- {x ∈ s | P}
|
||||
definition sep (P : X → Prop) (s : set X) : set X := λx, x ∈ s ∧ P x
|
||||
notation `{` binder ` ∈ ` s ` | ` r:(scoped:1 p, sep p s) `}` := r
|
||||
|
||||
/- insert -/
|
||||
|
||||
definition insert (x : X) (a : set X) : set X := {y : X | y = x ∨ y ∈ a}
|
||||
|
||||
-- '{x, y, z}
|
||||
notation `'{`:max a:(foldr `, ` (x b, insert x b) ∅) `}`:0 := a
|
||||
|
||||
theorem subset_insert (x : X) (a : set X) : a ⊆ insert x a :=
|
||||
take y, assume ys, or.inr ys
|
||||
|
||||
theorem mem_insert (x : X) (s : set X) : x ∈ insert x s :=
|
||||
or.inl rfl
|
||||
|
||||
theorem mem_insert_of_mem {x : X} {s : set X} (y : X) : x ∈ s → x ∈ insert y s :=
|
||||
assume h, or.inr h
|
||||
|
||||
theorem eq_or_mem_of_mem_insert {x a : X} {s : set X} : x ∈ insert a s → x = a ∨ x ∈ s :=
|
||||
assume h, h
|
||||
|
||||
end set
|
||||
|
|
Loading…
Reference in a new issue