prove two of the sorry's in cohomology
This commit is contained in:
parent
b027186436
commit
e92fb0a435
4 changed files with 108 additions and 57 deletions
|
@ -70,14 +70,6 @@ definition cohomology_equiv_shomotopy_group_sp_cotensor (X : Type*) (Y : spectru
|
|||
trunc_equiv_trunc 0 (!pfunext ⬝e loop_pequiv_loop !pfunext ⬝e loopn_pequiv_loopn 2
|
||||
(pequiv_of_eq (ap (λn, ppmap X (Y n)) (add.comm n 2 ⬝ ap (add 2) !neg_neg⁻¹))))
|
||||
|
||||
definition cohomology_isomorphism_shomotopy_group_sp_cotensor (X : Type*) (Y : spectrum) {n m : ℤ}
|
||||
(p : -m = n) : H^n[X, Y] ≃g πₛ[m] (sp_cotensor X Y) :=
|
||||
sorry /- TODO FOR SSS -/
|
||||
|
||||
definition unreduced_cohomology_isomorphism_shomotopy_group_sp_ucotensor (X : Type) (Y : spectrum)
|
||||
{n m : ℤ} (p : -m = n) : uH^n[X, Y] ≃g πₛ[m] (sp_ucotensor X Y) :=
|
||||
sorry /- TODO FOR SSS -/
|
||||
|
||||
definition parametrized_cohomology_isomorphism_shomotopy_group_spi {X : Type*} (Y : X → spectrum)
|
||||
{n m : ℤ} (p : -m = n) : pH^n[(x : X), Y x] ≃g πₛ[m] (spi X Y) :=
|
||||
begin
|
||||
|
@ -90,8 +82,25 @@ end
|
|||
|
||||
definition unreduced_parametrized_cohomology_isomorphism_shomotopy_group_supi {X : Type}
|
||||
(Y : X → spectrum) {n m : ℤ} (p : -m = n) : upH^n[(x : X), Y x] ≃g πₛ[m] (supi X Y) :=
|
||||
begin
|
||||
refine parametrized_cohomology_isomorphism_shomotopy_group_spi (add_point_spectrum Y) p ⬝g _,
|
||||
apply shomotopy_group_isomorphism_of_pequiv, intro k,
|
||||
apply pppi_add_point_over
|
||||
end
|
||||
|
||||
definition cohomology_isomorphism_shomotopy_group_sp_cotensor (X : Type*) (Y : spectrum) {n m : ℤ}
|
||||
(p : -m = n) : H^n[X, Y] ≃g πₛ[m] (sp_cotensor X Y) :=
|
||||
sorry /- TODO FOR SSS -/
|
||||
|
||||
definition unreduced_cohomology_isomorphism_shomotopy_group_sp_ucotensor (X : Type) (Y : spectrum)
|
||||
{n m : ℤ} (p : -m = n) : uH^n[X, Y] ≃g πₛ[m] (sp_ucotensor X Y) :=
|
||||
begin
|
||||
refine cohomology_isomorphism_shomotopy_group_sp_cotensor X₊ Y p ⬝g _,
|
||||
apply shomotopy_group_isomorphism_of_pequiv, intro k, apply ppmap_add_point
|
||||
end
|
||||
|
||||
|
||||
|
||||
/- functoriality -/
|
||||
|
||||
definition cohomology_functor [constructor] {X X' : Type*} (f : X' →* X) (Y : spectrum)
|
||||
|
@ -133,7 +142,10 @@ sorry /- TODO FOR SSS -/
|
|||
|
||||
definition parametrized_cohomology_isomorphism_right {X : Type*} {Y Y' : X → spectrum}
|
||||
(e : Πx n, Y x n ≃* Y' x n) (n : ℤ) : pH^n[(x : X), Y x] ≃g pH^n[(x : X), Y' x] :=
|
||||
sorry /- TODO FOR SSS -/
|
||||
parametrized_cohomology_isomorphism_shomotopy_group_spi Y !neg_neg ⬝g
|
||||
shomotopy_group_isomorphism_of_pequiv (-n) (λk, ppi_pequiv_right sorry) ⬝g
|
||||
(parametrized_cohomology_isomorphism_shomotopy_group_spi Y' !neg_neg)⁻¹ᵍ
|
||||
--sorry /- TODO FOR SSS -/
|
||||
|
||||
definition unreduced_parametrized_cohomology_isomorphism_right {X : Type} {Y Y' : X → spectrum}
|
||||
(e : Πx n, Y x n ≃* Y' x n) (n : ℤ) : upH^n[(x : X), Y x] ≃g upH^n[(x : X), Y' x] :=
|
||||
|
|
|
@ -1235,19 +1235,23 @@ spectrify_fun (smash_prespectrum_fun f g)
|
|||
spectrum.MK (λn, plift punit) (λn, pequiv_of_is_contr _ _ _ _)
|
||||
|
||||
definition shomotopy_group_sunit.{u} (n : ℤ) : πₛ[n] sunit.{u} ≃g trivial_ab_group_lift.{u} :=
|
||||
have H : 0 <[ℕ] 2, from !zero_lt_succ,
|
||||
isomorphism_of_is_contr (@trivial_homotopy_group_of_is_trunc _ _ _ !is_trunc_lift H)
|
||||
!is_trunc_lift
|
||||
phomotopy_group_plift_punit 2
|
||||
|
||||
definition add_point_spectrum [constructor] {X : Type} (Y : X → spectrum) (x : X₊) : spectrum :=
|
||||
spectrum.MK (λn, add_point_over (λx, Y x n) x)
|
||||
begin
|
||||
intro n, induction x with x,
|
||||
apply pequiv_of_is_contr,
|
||||
apply is_trunc_lift,
|
||||
apply is_contr_loop_of_is_contr, apply is_trunc_lift,
|
||||
exact equiv_glue (Y x) n
|
||||
end
|
||||
|
||||
open option
|
||||
definition add_point_spectrum [unfold 3] {X : Type} (Y : X → spectrum) : X₊ → spectrum
|
||||
| (some x) := Y x
|
||||
| none := sunit
|
||||
|
||||
definition shomotopy_group_add_point_spectrum {X : Type} (Y : X → spectrum) (n : ℤ) :
|
||||
Π(x : X₊), πₛ[n] (add_point_spectrum Y x) ≃g add_point_AbGroup (λ (x : X), πₛ[n] (Y x)) x
|
||||
| (some x) := by reflexivity
|
||||
| none := shomotopy_group_sunit n
|
||||
| none := proof phomotopy_group_plift_punit 2 qed
|
||||
|
||||
/- The Eilenberg-MacLane spectrum -/
|
||||
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
|
||||
import types.pointed2 .move_to_lib
|
||||
|
||||
open pointed eq equiv function is_equiv unit is_trunc trunc nat algebra sigma group
|
||||
open pointed eq equiv function is_equiv unit is_trunc trunc nat algebra sigma group lift option
|
||||
|
||||
namespace pointed
|
||||
|
||||
|
@ -227,5 +227,20 @@ namespace pointed
|
|||
phomotopy.mk (λa, ap f !is_prop.elim ⬝ respect_pt f ⬝ (respect_pt g)⁻¹ ⬝ ap g !is_prop.elim)
|
||||
begin rewrite [▸*, is_prop_elim_self, +ap_idp, idp_con, con_idp, inv_con_cancel_right] end
|
||||
|
||||
definition add_point_over [unfold 3] {A : Type} (B : A → Type*) : A₊ → Type*
|
||||
| (some a) := B a
|
||||
| none := plift punit
|
||||
|
||||
definition phomotopy_group_plift_punit.{u} (n : ℕ) [H : is_at_least_two n] :
|
||||
πag[n] (plift.{0 u} punit) ≃g trivial_ab_group_lift.{u} :=
|
||||
begin
|
||||
induction H with n,
|
||||
have H : 0 <[ℕ] n+2, from !zero_lt_succ,
|
||||
have is_set unit, from _,
|
||||
have is_trunc (trunc_index.of_nat 0) punit, from this,
|
||||
exact isomorphism_of_is_contr (@trivial_homotopy_group_of_is_trunc _ _ _ !is_trunc_lift H)
|
||||
!is_trunc_lift
|
||||
end
|
||||
|
||||
|
||||
end pointed
|
||||
|
|
|
@ -6,7 +6,7 @@ Authors: Ulrik Buchholtz, Floris van Doorn
|
|||
|
||||
import homotopy.connectedness types.pointed2 .move_to_lib .pointed
|
||||
|
||||
open eq pointed equiv sigma is_equiv trunc
|
||||
open eq pointed equiv sigma is_equiv trunc option
|
||||
|
||||
/-
|
||||
In this file we define dependent pointed maps and properties of them.
|
||||
|
@ -153,8 +153,6 @@ namespace pointed
|
|||
: sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _)
|
||||
... ≃ (k ~~* l) : ppi_homotopy.sigma_char k l
|
||||
|
||||
|
||||
variables
|
||||
-- the same as pmap_eq
|
||||
variables {k l}
|
||||
definition ppi_eq (h : k ~~* l) : k = l :=
|
||||
|
@ -471,6 +469,28 @@ namespace pointed
|
|||
-- definition pppi_ppmap {A C : Type*} {B : A → Type*} :
|
||||
-- ppmap (/- dependent smash of B -/) C ≃* Π*(a : A), ppmap (B a) C :=
|
||||
|
||||
definition ppi_add_point_over {A : Type} (B : A → Type*) :
|
||||
(Π*a, add_point_over B a) ≃ Πa, B a :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ intro f a, exact f (some a) },
|
||||
{ intro f, fconstructor,
|
||||
intro a, cases a, exact pt, exact f a,
|
||||
reflexivity },
|
||||
{ intro f, reflexivity },
|
||||
{ intro f, cases f with f p, apply ppi_eq, fapply ppi_homotopy.mk,
|
||||
{ intro a, cases a, exact p⁻¹, reflexivity },
|
||||
{ exact con.left_inv p }},
|
||||
end
|
||||
|
||||
definition pppi_add_point_over {A : Type} (B : A → Type*) :
|
||||
(Π*a, add_point_over B a) ≃* Πᵘ*a, B a :=
|
||||
pequiv_of_equiv (ppi_add_point_over B) idp
|
||||
|
||||
definition ppmap_add_point {A : Type} (B : Type*) :
|
||||
ppmap A₊ B ≃* A →ᵘ* B :=
|
||||
pequiv_of_equiv (pmap_equiv_left A B) idp
|
||||
|
||||
-- TODO: homotopy_of_eq and apd10 should be the same
|
||||
-- TODO: there is also apd10_eq_of_homotopy in both pi and eq(?)
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue