finish first part of constructing gysin sequence
We have a long exact sequence, we still need to show that it consists of the correct groups
This commit is contained in:
parent
b251465e72
commit
ea402f56ea
4 changed files with 95 additions and 34 deletions
|
@ -673,6 +673,13 @@ begin
|
|||
exact graded_hom_square f (to_right_inv (deg f) (deg f x)) idp (to_left_inv (deg f) x) idp
|
||||
end
|
||||
|
||||
definition graded_homology_isomorphism_kernel_module
|
||||
(g : M₂ →gm M₃) (f : M₁ →gm M₂) (x : I)
|
||||
(H : Πm, image (f ← x) m → m = 0) : graded_homology g f x ≃lm graded_kernel g x :=
|
||||
begin
|
||||
apply quotient_module_isomorphism, intro m h, apply subtype_eq, apply H, exact h
|
||||
end
|
||||
|
||||
definition image_of_graded_homology_intro_eq_zero {g : M₂ →gm M₃} {f : M₁ →gm M₂}
|
||||
⦃i j : I⦄ (p : deg f i = j) (m : graded_kernel g j) (H : graded_homology_intro g f j m = 0) :
|
||||
image (f ↘ p) m.1 :=
|
||||
|
|
|
@ -312,6 +312,13 @@ section
|
|||
definition lm_constant [constructor] (M₁ M₂ : LeftModule R) : M₁ →lm M₂ :=
|
||||
homomorphism.mk (const M₁ 0) !is_module_hom_constant
|
||||
|
||||
definition trivial_image_of_is_contr {R} {M₁ M₂ : LeftModule R} {φ : M₁ →lm M₂} (H : is_contr M₁)
|
||||
⦃m : M₂⦄ (hm : image φ m) : m = 0 :=
|
||||
begin
|
||||
induction hm with m' p, induction p,
|
||||
exact ap φ (@eq_of_is_contr _ H _ _) ⬝ to_respect_zero φ
|
||||
end
|
||||
|
||||
structure isomorphism (M₁ M₂ : LeftModule R) :=
|
||||
(to_hom : M₁ →lm M₂)
|
||||
(is_equiv_to_hom : is_equiv to_hom)
|
||||
|
|
|
@ -468,10 +468,16 @@ definition is_surjective_of_is_contr_homology_of_is_contr (ψ : M₂ →lm M₃)
|
|||
(H₁ : is_contr (homology ψ φ)) (H₂ : is_contr M₃) : is_surjective φ :=
|
||||
is_surjective_of_is_contr_homology_of_constant ψ H₁ (λm, @eq_of_is_contr _ H₂ _ _)
|
||||
|
||||
definition homology_isomorphism_kernel_module (ψ : M₂ →lm M₃) (φ : M₁ →lm M₂)
|
||||
(H : Πm, image φ m → m = 0) : homology ψ φ ≃lm kernel_module ψ :=
|
||||
begin
|
||||
apply quotient_module_isomorphism, intro m h, apply subtype_eq, apply H, exact h
|
||||
end
|
||||
|
||||
definition cokernel_module (φ : M₁ →lm M₂) : LeftModule R :=
|
||||
quotient_module (image φ)
|
||||
|
||||
definition cokernel_module_isomorphism_homology (ψ : M₂ →lm M₃) (φ : M₁ →lm M₂) (H : Πm, ψ m = 0) :
|
||||
definition homology_isomorphism_cokernel_module (ψ : M₂ →lm M₃) (φ : M₁ →lm M₂) (H : Πm, ψ m = 0) :
|
||||
homology ψ φ ≃lm cokernel_module φ :=
|
||||
quotient_module_isomorphism_quotient_module
|
||||
(submodule_isomorphism _ H)
|
||||
|
|
|
@ -7,22 +7,48 @@ open eq pointed is_trunc is_conn is_equiv equiv sphere fiber chain_complex left_
|
|||
prod nat int algebra function spectral_sequence
|
||||
|
||||
namespace cohomology
|
||||
-- set_option pp.universes true
|
||||
-- print unreduced_ordinary_cohomology_sphere_of_neq_nat
|
||||
-- --set_option formatter.hide_full_terms false
|
||||
-- exit
|
||||
definition gysin_sequence' {E B : Type*} (n : ℕ) (HB : is_conn 1 B) (f : E →* B)
|
||||
(e : pfiber f ≃* sphere (n+1)) (A : AbGroup) : chain_complex +3ℤ :=
|
||||
let c := serre_spectral_sequence_map_of_is_conn pt f (EM_spectrum A) 0 (is_strunc_EM_spectrum A) HB in
|
||||
/-
|
||||
We have maps:
|
||||
d_m = d_(m-1,n+1)^n : E_(m-1,n+1)^n → E_(m+n+1,0)^n
|
||||
Note that ker d_m = E_(m-1,n+1)^∞ and coker d_m = E_(m+n+1,0)^∞.
|
||||
We have short exact sequences
|
||||
coker d_{m-1} → D_{m+n}^∞ → ker d_m
|
||||
where D^∞ is the abutment of the spectral sequence.
|
||||
This comes from the spectral sequence, using the fact that coker d_{m-1} and ker d_m are the only
|
||||
two nontrivial groups building up D_{m+n}^∞ (in the filtration of D_{m+n}^∞).
|
||||
We can splice these SESs together to get a LES
|
||||
... E_(m+n,0)^n → D_{m+n}^∞ → E_(m-1,n+1)^n → E_(m+n+1,0)^n → D_{m+n+1}^∞ ...
|
||||
-/
|
||||
|
||||
definition gysin_sequence' {E B : Type*} {n : ℕ} (HB : is_conn 1 B) (f : E →* B)
|
||||
(e : pfiber f ≃* sphere (n+1)) (A : AbGroup) : chain_complex -3ℤ :=
|
||||
let c := serre_spectral_sequence_map_of_is_conn pt f (EM_spectrum A) 0
|
||||
(is_strunc_EM_spectrum A) HB in
|
||||
let cn : is_normal c := !is_normal_serre_spectral_sequence_map_of_is_conn in
|
||||
let deg_d_x : Π(m : ℤ), deg (convergent_spectral_sequence.d c n) ((m+1) - 3, n + 1) = (n + m - 0, 0) :=
|
||||
have deg_d_x : Π(m : ℤ), deg (convergent_spectral_sequence.d c n) ((m - 1) - 1, n + 1) =
|
||||
(n + m - 0, 0),
|
||||
begin
|
||||
intro m, refine deg_d_normal_eq cn _ _ ⬝ _,
|
||||
refine prod_eq _ !add.right_inv,
|
||||
refine add.comm4 (m+1) (-3) n 2 ⬝ _,
|
||||
exact ap (λx, x - 1) (add.comm (m + 1) n ⬝ (add.assoc n m 1)⁻¹) ⬝ !add.assoc
|
||||
end in
|
||||
left_module.LES_of_SESs _ _ _ (λm, convergent_spectral_sequence.d c n (m - 3, n + 1))
|
||||
refine ap (λx, x + (n+2)) !sub_sub ⬝ _,
|
||||
refine add.comm4 m (- 2) n 2 ⬝ _,
|
||||
refine ap (λx, x + 0) !add.comm
|
||||
end,
|
||||
have trivial_E : Π(r : ℕ) (p q : ℤ) (hq : q ≠ 0) (hq' : q ≠ of_nat (n+1)),
|
||||
is_contr (convergent_spectral_sequence.E c r (p, q)),
|
||||
begin
|
||||
intros, apply is_contr_E, apply is_contr_ordinary_cohomology, esimp,
|
||||
refine is_contr_equiv_closed_rev _ (unreduced_ordinary_cohomology_sphere_of_neq A hq' hq),
|
||||
apply group.equiv_of_isomorphism, apply unreduced_ordinary_cohomology_isomorphism, exact e⁻¹ᵉ*
|
||||
end,
|
||||
have trivial_E' : Π(r : ℕ) (p q : ℤ) (hq : q > n+1),
|
||||
is_contr (convergent_spectral_sequence.E c r (p, q)),
|
||||
begin
|
||||
intros, apply trivial_E r p q,
|
||||
{ intro h, subst h, apply not_lt_zero (n+1), exact lt_of_of_nat_lt_of_nat hq },
|
||||
{ intro h, subst h, exact lt.irrefl _ hq }
|
||||
end,
|
||||
left_module.LES_of_SESs _ _ _ (λm, convergent_spectral_sequence.d c n (m - 1, n + 1))
|
||||
begin
|
||||
intro m,
|
||||
fapply short_exact_mod_isomorphism,
|
||||
|
@ -30,19 +56,19 @@ left_module.LES_of_SESs _ _ _ (λm, convergent_spectral_sequence.d c n (m - 3, n
|
|||
{ fapply short_exact_mod_of_is_contr_submodules
|
||||
(convergence_0 c (n + m) (λm, neg_zero)),
|
||||
{ exact zero_lt_succ n },
|
||||
{ intro k Hk0 Hkn, apply is_contr_E,
|
||||
apply is_contr_ordinary_cohomology,
|
||||
refine is_contr_equiv_closed_rev _
|
||||
(unreduced_ordinary_cohomology_sphere_of_neq_nat A Hkn Hk0),
|
||||
apply group.equiv_of_isomorphism, apply unreduced_ordinary_cohomology_isomorphism,
|
||||
exact e⁻¹ᵉ* }},
|
||||
{ intro k Hk0 Hkn, apply trivial_E, exact λh, Hk0 (of_nat.inj h),
|
||||
exact λh, Hkn (of_nat.inj h), }},
|
||||
{ symmetry, refine Einf_isomorphism c (n+1) _ _ ⬝lm
|
||||
convergent_spectral_sequence.α c n (n + m - 0, 0) ⬝lm
|
||||
isomorphism_of_eq (ap (graded_homology _ _) _) ⬝lm
|
||||
!graded_homology_isomorphism ⬝lm
|
||||
cokernel_module_isomorphism_homology _ _ _,
|
||||
{ exact sorry },
|
||||
{ exact sorry },
|
||||
convergent_spectral_sequence.α c n (n + m - 0, 0) ⬝lm
|
||||
isomorphism_of_eq (ap (graded_homology _ _) _) ⬝lm
|
||||
!graded_homology_isomorphism ⬝lm
|
||||
homology_isomorphism_cokernel_module _ _ _,
|
||||
{ intros r Hr, apply trivial_E', apply of_nat_lt_of_nat_of_lt,
|
||||
rewrite [zero_add], exact lt_succ_of_le Hr },
|
||||
{ intros r Hr, apply is_contr_E, apply is_normal.normal2 cn,
|
||||
refine lt_of_le_of_lt (le_of_eq (ap (λx : ℤ × ℤ, 0 + pr2 x) (is_normal.normal3 cn r))) _,
|
||||
esimp, rewrite [-sub_eq_add_neg], apply sub_lt_of_pos, apply of_nat_lt_of_nat_of_lt,
|
||||
apply succ_pos },
|
||||
{ exact (deg_d_x m)⁻¹ },
|
||||
{ intro x, apply @eq_of_is_contr, apply is_contr_E,
|
||||
apply is_normal.normal2 cn,
|
||||
|
@ -51,17 +77,32 @@ left_module.LES_of_SESs _ _ _ (λm, convergent_spectral_sequence.d c n (m - 3, n
|
|||
refine lt_of_le_of_lt (le_of_eq (zero_add (-(n+1)))) _,
|
||||
apply neg_neg_of_pos, apply of_nat_succ_pos }},
|
||||
{ reflexivity },
|
||||
{ exact sorry }
|
||||
{ symmetry,
|
||||
refine Einf_isomorphism c (n+1) _ _ ⬝lm
|
||||
convergent_spectral_sequence.α c n (n + m - (n+1), n+1) ⬝lm
|
||||
graded_homology_isomorphism_kernel_module _ _ _ _ ⬝lm
|
||||
isomorphism_of_eq (ap (graded_kernel _) _),
|
||||
{ intros r Hr, apply trivial_E', apply of_nat_lt_of_nat_of_lt,
|
||||
apply lt_add_of_pos_right, apply zero_lt_succ },
|
||||
{ intros r Hr, apply is_contr_E, apply is_normal.normal2 cn,
|
||||
refine lt_of_le_of_lt (le_of_eq (ap (λx : ℤ × ℤ, (n+1)+pr2 x) (is_normal.normal3 cn r))) _,
|
||||
esimp, rewrite [-sub_eq_add_neg], apply sub_lt_right_of_lt_add,
|
||||
apply of_nat_lt_of_nat_of_lt, rewrite [zero_add], exact lt_succ_of_le Hr },
|
||||
{ apply trivial_image_of_is_contr, rewrite [deg_d_inv_eq],
|
||||
apply trivial_E', apply of_nat_lt_of_nat_of_lt,
|
||||
apply lt_add_of_pos_right, apply zero_lt_succ },
|
||||
{ refine prod_eq _ rfl, refine ap (add _) !neg_add ⬝ _,
|
||||
refine add.comm4 n m (-n) (- 1) ⬝ _,
|
||||
refine ap (λx, x + _) !add.right_inv ⬝ !zero_add }}
|
||||
end
|
||||
|
||||
-- (λm, short_exact_mod_isomorphism
|
||||
-- _
|
||||
-- isomorphism.rfl
|
||||
-- _
|
||||
-- (short_exact_mod_of_is_contr_submodules
|
||||
-- (convergent_HDinf X _)
|
||||
-- (zero_lt_succ n)
|
||||
-- _))
|
||||
-- open fin
|
||||
-- definition gysin_sequence'_zero_equiv {E B : Type*} {n : ℕ} (HB : is_conn 1 B) (f : E →* B)
|
||||
-- (e : pfiber f ≃* sphere (n+1)) (A : AbGroup) (m : ℤ) :
|
||||
-- gysin_sequence' HB f e A (m, 0) ≃ _ :=
|
||||
-- _
|
||||
|
||||
|
||||
|
||||
|
||||
end cohomology
|
||||
|
|
Loading…
Reference in a new issue