derive the unparametrized serre spectral sequence
This commit is contained in:
parent
ceee305a60
commit
f8157068e4
5 changed files with 106 additions and 14 deletions
|
@ -67,8 +67,9 @@ namespace group
|
|||
: Group.mk (trunc 0 (Π*(a : A), Ω B)) !trunc_group
|
||||
≃g Group.mk (trunc 0 (A →* Ω B)) !trunc_group :=
|
||||
begin
|
||||
apply trunc_isomorphism_of_equiv (pppi_equiv_pmap A (Ω B)),
|
||||
intro h k, induction h with h h_pt, induction k with k k_pt, reflexivity
|
||||
reflexivity,
|
||||
-- apply trunc_isomorphism_of_equiv (pppi_equiv_pmap A (Ω B)),
|
||||
-- intro h k, induction h with h h_pt, induction k with k k_pt, reflexivity
|
||||
end
|
||||
|
||||
section
|
||||
|
|
|
@ -442,6 +442,17 @@ namespace left_module
|
|||
lemma Dinfdiag_stable {s : ℕ} (h : B (deg (k X) x) ≤ s) : is_contr (Dinfdiag s) :=
|
||||
is_contr_D _ _ (Dub !deg_iterate_ik_commute h)
|
||||
|
||||
/- some useful immediate properties -/
|
||||
|
||||
definition short_exact_mod_infpage0 (bound_zero : B' (deg (k X) x) = 0) :
|
||||
short_exact_mod (Einfdiag 0) (D X (deg (k X) x)) (Dinfdiag 1) :=
|
||||
begin
|
||||
refine short_exact_mod_isomorphism _ _ _ (short_exact_mod_infpage 0),
|
||||
{ reflexivity },
|
||||
{ exact (Dinfdiag0 bound_zero)⁻¹ˡᵐ },
|
||||
{ reflexivity }
|
||||
end
|
||||
|
||||
end
|
||||
end convergence_theorem
|
||||
|
||||
|
|
|
@ -9,13 +9,15 @@ Reduced cohomology of spectra and cohomology theories
|
|||
import ..spectrum.basic ..algebra.arrow_group ..homotopy.fwedge ..choice ..homotopy.pushout ..algebra.product_group
|
||||
|
||||
open eq spectrum int trunc pointed EM group algebra circle sphere nat EM.ops equiv susp is_trunc
|
||||
function fwedge cofiber bool lift sigma is_equiv choice pushout algebra unit pi
|
||||
function fwedge cofiber bool lift sigma is_equiv choice pushout algebra unit pi is_conn
|
||||
|
||||
namespace cohomology
|
||||
|
||||
/- The cohomology of X with coefficients in Y is
|
||||
trunc 0 (A →* Ω[2] (Y (n+2)))
|
||||
In the file arrow_group (in algebra) we construct the group structure on this type.
|
||||
Equivalently, it's
|
||||
πₛ[n] (sp_cotensor X Y)
|
||||
-/
|
||||
definition cohomology (X : Type*) (Y : spectrum) (n : ℤ) : AbGroup :=
|
||||
AbGroup_trunc_pmap X (Y (n+2))
|
||||
|
@ -60,16 +62,7 @@ notation `opH^` n `[`:0 binders `, ` r:(scoped G, ordinary_parametrized_cohomolo
|
|||
notation `upH^` n `[`:0 binders `, ` r:(scoped Y, unreduced_parametrized_cohomology Y n) `]`:0 := r
|
||||
notation `uopH^` n `[`:0 binders `, ` r:(scoped G, unreduced_ordinary_parametrized_cohomology G n) `]`:0 := r
|
||||
|
||||
-- check H^3[S¹*,EM_spectrum agℤ]
|
||||
-- check H^3[S¹*]
|
||||
-- check pH^3[(x : S¹*), EM_spectrum agℤ]
|
||||
|
||||
/- an alternate definition of cohomology -/
|
||||
definition cohomology_equiv_shomotopy_group_sp_cotensor (X : Type*) (Y : spectrum) (n : ℤ) :
|
||||
H^n[X, Y] ≃ πₛ[-n] (sp_cotensor X Y) :=
|
||||
trunc_equiv_trunc 0 (!pfunext ⬝e loop_pequiv_loop !pfunext ⬝e loopn_pequiv_loopn 2
|
||||
(pequiv_of_eq (ap (λn, ppmap X (Y n)) (add.comm n 2 ⬝ ap (add 2) !neg_neg⁻¹))))
|
||||
|
||||
definition parametrized_cohomology_isomorphism_shomotopy_group_spi {X : Type*} (Y : X → spectrum)
|
||||
{n m : ℤ} (p : -m = n) : pH^n[(x : X), Y x] ≃g πₛ[m] (spi X Y) :=
|
||||
begin
|
||||
|
@ -145,6 +138,14 @@ cohomology_isomorphism_shomotopy_group_sp_cotensor X Y !neg_neg ⬝g
|
|||
shomotopy_group_isomorphism_of_pequiv (-n) (λk, pequiv_ppcompose_left (e k)) ⬝g
|
||||
(cohomology_isomorphism_shomotopy_group_sp_cotensor X Y' !neg_neg)⁻¹ᵍ
|
||||
|
||||
definition unreduced_cohomology_isomorphism {X X' : Type} (f : X' ≃ X) (Y : spectrum) (n : ℤ) :
|
||||
uH^n[X, Y] ≃g uH^n[X', Y] :=
|
||||
cohomology_isomorphism (add_point_pequiv f) Y n
|
||||
|
||||
definition unreduced_cohomology_isomorphism_right (X : Type) {Y Y' : spectrum} (e : Πn, Y n ≃* Y' n)
|
||||
(n : ℤ) : uH^n[X, Y] ≃g uH^n[X, Y'] :=
|
||||
cohomology_isomorphism_right X₊ e n
|
||||
|
||||
definition parametrized_cohomology_isomorphism_right {X : Type*} {Y Y' : X → spectrum}
|
||||
(e : Πx n, Y x n ≃* Y' x n) (n : ℤ) : pH^n[(x : X), Y x] ≃g pH^n[(x : X), Y' x] :=
|
||||
parametrized_cohomology_isomorphism_shomotopy_group_spi Y !neg_neg ⬝g
|
||||
|
@ -178,6 +179,28 @@ parametrized_cohomology_isomorphism_right
|
|||
end
|
||||
n
|
||||
|
||||
definition pH_isomorphism_H {X : Type*} (Y : spectrum) (n : ℤ) : pH^n[(x : X), Y] ≃g H^n[X, Y] :=
|
||||
by reflexivity
|
||||
|
||||
definition opH_isomorphism_oH {X : Type*} (G : AbGroup) (n : ℤ) : opH^n[(x : X), G] ≃g oH^n[X, G] :=
|
||||
by reflexivity
|
||||
|
||||
definition upH_isomorphism_uH {X : Type} (Y : spectrum) (n : ℤ) : upH^n[(x : X), Y] ≃g uH^n[X, Y] :=
|
||||
unreduced_parametrized_cohomology_isomorphism_shomotopy_group_supi _ !neg_neg ⬝g
|
||||
(unreduced_cohomology_isomorphism_shomotopy_group_sp_ucotensor _ _ !neg_neg)⁻¹ᵍ
|
||||
|
||||
definition uopH_isomorphism_uoH {X : Type} (G : AbGroup) (n : ℤ) :
|
||||
uopH^n[(x : X), G] ≃g uoH^n[X, G] :=
|
||||
!upH_isomorphism_uH
|
||||
|
||||
definition uopH_isomorphism_uoH_of_is_conn {X : Type*} (G : X → AbGroup) (n : ℤ) (H : is_conn 1 X) :
|
||||
uopH^n[(x : X), G x] ≃g uoH^n[X, G pt] :=
|
||||
begin
|
||||
refine _ ⬝g !uopH_isomorphism_uoH,
|
||||
apply unreduced_ordinary_parametrized_cohomology_isomorphism_right,
|
||||
refine is_conn.elim 0 _ _, reflexivity
|
||||
end
|
||||
|
||||
/- suspension axiom -/
|
||||
|
||||
definition cohomology_susp_2 (Y : spectrum) (n : ℤ) :
|
||||
|
|
|
@ -208,7 +208,9 @@ converges_to_g_isomorphism
|
|||
end unreduced_atiyah_hirzebruch
|
||||
|
||||
section serre
|
||||
variables {X : Type} (F : X → Type) (Y : spectrum) (s₀ : ℤ) (H : is_strunc s₀ Y)
|
||||
universe variable u
|
||||
variables {X : Type} (x₀ : X) (F : X → Type) {X₁ X₂ : pType.{u}} (f : X₁ →* X₂)
|
||||
(Y : spectrum) (s₀ : ℤ) (H : is_strunc s₀ Y)
|
||||
|
||||
include H
|
||||
definition serre_convergence :
|
||||
|
@ -231,7 +233,25 @@ section serre
|
|||
apply shomotopy_group_isomorphism_of_pequiv, intro k,
|
||||
exact (sigma_pumap F (Y k))⁻¹ᵉ*
|
||||
end
|
||||
qed
|
||||
qed
|
||||
|
||||
definition serre_convergence_of_is_conn (H2 : is_conn 1 X) :
|
||||
(λn s, uoH^-(n-s)[X, uH^-s[F x₀, Y]]) ⟹ᵍ (λn, uH^-n[Σ(x : X), F x, Y]) :=
|
||||
proof
|
||||
converges_to_g_isomorphism
|
||||
(serre_convergence F Y s₀ H)
|
||||
begin intro n s, exact @uopH_isomorphism_uoH_of_is_conn (pointed.MK X x₀) _ _ H2 end
|
||||
begin intro n, reflexivity end
|
||||
qed
|
||||
|
||||
definition serre_convergence_of_pmap (H2 : is_conn 1 X₂) :
|
||||
(λn s, uoH^-(n-s)[X₂, uH^-s[pfiber f, Y]]) ⟹ᵍ (λn, uH^-n[X₁, Y]) :=
|
||||
proof
|
||||
converges_to_g_isomorphism
|
||||
(serre_convergence_of_is_conn pt (λx, fiber f x) Y s₀ H H2)
|
||||
begin intro n s, reflexivity end
|
||||
begin intro n, apply unreduced_cohomology_isomorphism, exact !sigma_fiber_equiv⁻¹ᵉ end
|
||||
qed
|
||||
|
||||
|
||||
end serre
|
||||
|
|
|
@ -215,6 +215,43 @@ namespace pointed
|
|||
definition loop_punit : Ω punit ≃* punit :=
|
||||
loop_pequiv_punit_of_is_set punit
|
||||
|
||||
definition add_point_functor' [unfold 4] {A B : Type} (e : A → B) (a : A₊) : B₊ :=
|
||||
begin induction a with a, exact none, exact some (e a) end
|
||||
|
||||
definition add_point_functor [constructor] {A B : Type} (e : A → B) : A₊ →* B₊ :=
|
||||
pmap.mk (add_point_functor' e) idp
|
||||
|
||||
definition add_point_functor_compose {A B C : Type} (f : B → C) (e : A → B) :
|
||||
add_point_functor (f ∘ e) ~* add_point_functor f ∘* add_point_functor e :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro x, induction x: reflexivity },
|
||||
reflexivity
|
||||
end
|
||||
|
||||
definition add_point_functor_id (A : Type) :
|
||||
add_point_functor id ~* pid A₊ :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro x, induction x: reflexivity },
|
||||
reflexivity
|
||||
end
|
||||
|
||||
definition add_point_functor_phomotopy {A B : Type} {e e' : A → B} (p : e ~ e') :
|
||||
add_point_functor e ~* add_point_functor e' :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro x, induction x with a, reflexivity, exact ap some (p a) },
|
||||
reflexivity
|
||||
end
|
||||
|
||||
definition add_point_pequiv {A B : Type} (e : A ≃ B) : A₊ ≃* B₊ :=
|
||||
pequiv.MK (add_point_functor e) (add_point_functor e⁻¹ᵉ)
|
||||
abstract !add_point_functor_compose⁻¹* ⬝* add_point_functor_phomotopy (left_inv e) ⬝*
|
||||
!add_point_functor_id end
|
||||
abstract !add_point_functor_compose⁻¹* ⬝* add_point_functor_phomotopy (right_inv e) ⬝*
|
||||
!add_point_functor_id end
|
||||
|
||||
definition add_point_over [unfold 3] {A : Type} (B : A → Type*) : A₊ → Type*
|
||||
| (some a) := B a
|
||||
| none := plift punit
|
||||
|
|
Loading…
Reference in a new issue