fix typos
This commit is contained in:
parent
d2c7eb2368
commit
f835dc896e
2 changed files with 3 additions and 3 deletions
2
.gitignore
vendored
2
.gitignore
vendored
|
@ -47,7 +47,7 @@ build.ninja
|
||||||
# these rules might exclude image files for figures etc.
|
# these rules might exclude image files for figures etc.
|
||||||
# *.ps
|
# *.ps
|
||||||
# *.eps
|
# *.eps
|
||||||
# *.pdf
|
*.pdf
|
||||||
|
|
||||||
## Generated if empty string is given at "Please type another file name for output:"
|
## Generated if empty string is given at "Please type another file name for output:"
|
||||||
.pdf
|
.pdf
|
||||||
|
|
|
@ -216,7 +216,7 @@ We define the pointed equivalences:
|
||||||
\begin{lem}\label{lem:smash-general}
|
\begin{lem}\label{lem:smash-general}
|
||||||
The smash product is functorial: if $f:A\pmap A'$ and $g:B\pmap B'$ then
|
The smash product is functorial: if $f:A\pmap A'$ and $g:B\pmap B'$ then
|
||||||
$f\smsh g:A\smsh B\pmap A'\smsh B'$. We write $A\smsh g$ or $f\smsh B$ if one of the
|
$f\smsh g:A\smsh B\pmap A'\smsh B'$. We write $A\smsh g$ or $f\smsh B$ if one of the
|
||||||
functions is the identity function. Moreover, if $p:f\sim f'$ and $q:g\sim g'$ then $p\smsh q:f\smsh g\sim f'\smsh g'$; this operation preserves reflexivities, symmetries and transitivies. We will write $p \smsh g$ or $f \smsh q$ if one of the homotopies is reflexivity.
|
functions is the identity function. Moreover, if $p:f\sim f'$ and $q:g\sim g'$ then $p\smsh q:f\smsh g\sim f'\smsh g'$; this operation preserves reflexivities, symmetries and transitivities. We will write $p \smsh g$ or $f \smsh q$ if one of the homotopies is reflexivity.
|
||||||
% The smash product satisfies the following properties.
|
% The smash product satisfies the following properties.
|
||||||
% \begin{itemize}
|
% \begin{itemize}
|
||||||
% \item The smash product is functorial: if $f:A\pmap A'$ and $g:B\pmap B'$ then
|
% \item The smash product is functorial: if $f:A\pmap A'$ and $g:B\pmap B'$ then
|
||||||
|
@ -729,7 +729,7 @@ are filled by (corollaries of) \autoref{lem:smash-general}.
|
||||||
$\epsilon_{B,C}\equiv\epsilon : (B\pmap C)\smsh B \pmap C$ dinatural in $B$ and pointed natural in $C$.
|
$\epsilon_{B,C}\equiv\epsilon : (B\pmap C)\smsh B \pmap C$ dinatural in $B$ and pointed natural in $C$.
|
||||||
These maps satisfy the unit-counit laws:
|
These maps satisfy the unit-counit laws:
|
||||||
$$(A\to\epsilon_{A,B})\o \eta_{A\to B,A}\sim \idfunc[A\to B]\qquad
|
$$(A\to\epsilon_{A,B})\o \eta_{A\to B,A}\sim \idfunc[A\to B]\qquad
|
||||||
\epsilon_{B,B\smsh C}\o \eta_{A,B}\smsh B\sim\idfunc[A\smsh B].$$
|
\epsilon_{B,A\smsh B}\o \eta_{A,B}\smsh B\sim\idfunc[A\smsh B].$$
|
||||||
\end{lem}
|
\end{lem}
|
||||||
Note: $\eta$ is also dinatural in $B$, but we don't need this.
|
Note: $\eta$ is also dinatural in $B$, but we don't need this.
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
Loading…
Reference in a new issue