define ==> notation for convergence of spectral sequences
This commit is contained in:
parent
0d48402927
commit
f8f0157df5
3 changed files with 79 additions and 5 deletions
|
@ -421,7 +421,6 @@ end
|
|||
(λa, to_right_inv (equiv_of_isomorphism eB) _) (λb, to_right_inv (equiv_of_isomorphism eC) _)
|
||||
(short_exact_mod.h H))
|
||||
|
||||
|
||||
end
|
||||
|
||||
end
|
||||
|
|
|
@ -451,6 +451,52 @@ namespace left_module
|
|||
-- print axioms Dinfdiag0
|
||||
-- print axioms Dinfdiag_stable
|
||||
|
||||
open int group prod convergence_theorem prod.ops
|
||||
|
||||
definition Z2 [constructor] : Set := gℤ ×g gℤ
|
||||
|
||||
structure converges_to.{u v w} {R : Ring} (E' : gℤ → gℤ → LeftModule.{u v} R)
|
||||
(Dinf : graded_module.{u 0 w} R gℤ) : Type.{max u (v+1) (w+1)} :=
|
||||
(X : exact_couple.{u 0 v w} R Z2)
|
||||
(HH : is_bounded X)
|
||||
(e : Π(x : gℤ ×g gℤ), exact_couple.E X x ≃lm E' x.1 x.2)
|
||||
(s₀ : gℤ)
|
||||
(p : Π(n : gℤ), is_bounded.B' HH (deg (k X) (n, s₀)) = 0)
|
||||
(f : Π(n : gℤ), exact_couple.D X (deg (k X) (n, s₀)) ≃lm Dinf n)
|
||||
|
||||
infix ` ⟹ `:25 := converges_to
|
||||
|
||||
definition converges_to_g [reducible] (E' : gℤ → gℤ → AbGroup) (Dinf : gℤ → AbGroup) : Type :=
|
||||
(λn s, LeftModule_int_of_AbGroup (E' n s)) ⟹ (λn, LeftModule_int_of_AbGroup (Dinf n))
|
||||
|
||||
infix ` ⟹ᵍ `:25 := converges_to_g
|
||||
|
||||
section
|
||||
open converges_to
|
||||
parameters {R : Ring} {E' : gℤ → gℤ → LeftModule R} {Dinf : graded_module R gℤ} (c : E' ⟹ Dinf)
|
||||
local abbreviation X := X c
|
||||
local abbreviation HH := HH c
|
||||
local abbreviation s₀ := s₀ c
|
||||
local abbreviation Dinfdiag (n : gℤ) (k : ℕ) := Dinfdiag X HH (n, s₀) k
|
||||
local abbreviation Einfdiag (n : gℤ) (k : ℕ) := Einfdiag X HH (n, s₀) k
|
||||
|
||||
include c
|
||||
|
||||
theorem is_contr_converges_to (H : Π(n s : gℤ), is_contr (E' n s)) (n : gℤ) : is_contr (Dinf n) :=
|
||||
begin
|
||||
assert H2 : Π(m : gℤ) (k : ℕ), is_contr (Einfdiag m k),
|
||||
{ intro m k, apply is_contr_E, exact is_trunc_equiv_closed_rev -2 (equiv_of_isomorphism (e c _)) },
|
||||
assert H3 : Π(m : gℤ), is_contr (Dinfdiag m 0),
|
||||
{ intro m, fapply nat.rec_down (λk, is_contr (Dinfdiag m k)),
|
||||
{ exact is_bounded.B HH (deg (k X) (m, s₀)) },
|
||||
{ apply Dinfdiag_stable, reflexivity },
|
||||
{ intro k H, exact sorry /-note zz := is_contr_middle_of_is_exact (short_exact_mod_infpage k)-/ }},
|
||||
refine @is_trunc_equiv_closed _ _ _ _ (H3 n),
|
||||
apply equiv_of_isomorphism,
|
||||
exact Dinfdiag0 X HH (n, s₀) (p c n) ⬝lm f c n
|
||||
end
|
||||
end
|
||||
|
||||
end left_module
|
||||
open left_module
|
||||
namespace pointed
|
||||
|
@ -485,8 +531,7 @@ namespace pointed
|
|||
open prod prod.ops fiber
|
||||
parameters {A : ℤ → Type*[1]} (f : Π(n : ℤ), A n →* A (n - 1)) [Hf : Πn, is_conn_fun 1 (f n)]
|
||||
include Hf
|
||||
protected definition I [constructor] : Set := trunctype.mk (gℤ ×g gℤ) !is_trunc_prod
|
||||
local abbreviation I := @pointed.I
|
||||
local abbreviation I [constructor] := Z2
|
||||
|
||||
-- definition D_sequence : graded_module rℤ I :=
|
||||
-- λv, LeftModule_int_of_AbGroup (πc[v.2] (A (v.1)))
|
||||
|
@ -510,8 +555,8 @@ namespace spectrum
|
|||
|
||||
parameters {A : ℤ → spectrum} (f : Π(s : ℤ), A s →ₛ A (s - 1))
|
||||
|
||||
protected definition I [constructor] : Set := trunctype.mk (gℤ ×g gℤ) !is_trunc_prod
|
||||
local abbreviation I := @spectrum.I
|
||||
-- protected definition I [constructor] : Set := gℤ ×g gℤ
|
||||
local abbreviation I [constructor] := Z2
|
||||
|
||||
definition D_sequence : graded_module rℤ I :=
|
||||
λv, LeftModule_int_of_AbGroup (πₛ[v.1] (A (v.2)))
|
||||
|
@ -652,6 +697,17 @@ namespace spectrum
|
|||
refine !add.assoc ⬝ ap (add s) !add.comm ⬝ !add.assoc⁻¹,
|
||||
end
|
||||
|
||||
definition converges_to_sequence : (λn s, πₛ[n] (sfiber (f s))) ⟹ᵍ (λn, πₛ[n] (A ub)) :=
|
||||
begin
|
||||
fapply converges_to.mk,
|
||||
{ exact exact_couple_sequence },
|
||||
{ exact is_bounded_sequence },
|
||||
{ intros, reflexivity },
|
||||
{ exact ub },
|
||||
{ intro n, change max0 (ub - ub) = 0, exact ap max0 (sub_self ub) },
|
||||
{ intro n, reflexivity }
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
-- Uncomment the next line to see that the proof uses univalence, but that there are no holes
|
||||
|
|
|
@ -120,6 +120,25 @@ namespace eq
|
|||
|
||||
end eq open eq
|
||||
|
||||
namespace nat
|
||||
|
||||
protected definition rec_down (P : ℕ → Type) (s : ℕ) (H0 : P s) (Hs : Πn, P (n+1) → P n) : P 0 :=
|
||||
have Hp : Πn, P n → P (pred n),
|
||||
begin
|
||||
intro n p, cases n with n,
|
||||
{ exact p },
|
||||
{ exact Hs n p }
|
||||
end,
|
||||
have H : Πn, P (s - n),
|
||||
begin
|
||||
intro n, induction n with n p,
|
||||
{ exact H0 },
|
||||
{ exact Hp (s - n) p }
|
||||
end,
|
||||
transport P (nat.sub_self s) (H s)
|
||||
|
||||
end nat
|
||||
|
||||
namespace pmap
|
||||
|
||||
definition eta {A B : Type*} (f : A →* B) : pmap.mk f (respect_pt f) = f :=
|
||||
|
|
Loading…
Reference in a new issue