define ==> notation for convergence of spectral sequences

This commit is contained in:
Floris van Doorn 2017-06-30 13:54:23 +01:00
parent 0d48402927
commit f8f0157df5
3 changed files with 79 additions and 5 deletions

View file

@ -421,7 +421,6 @@ end
(λa, to_right_inv (equiv_of_isomorphism eB) _) (λb, to_right_inv (equiv_of_isomorphism eC) _) (λa, to_right_inv (equiv_of_isomorphism eB) _) (λb, to_right_inv (equiv_of_isomorphism eC) _)
(short_exact_mod.h H)) (short_exact_mod.h H))
end end
end end

View file

@ -451,6 +451,52 @@ namespace left_module
-- print axioms Dinfdiag0 -- print axioms Dinfdiag0
-- print axioms Dinfdiag_stable -- print axioms Dinfdiag_stable
open int group prod convergence_theorem prod.ops
definition Z2 [constructor] : Set := g ×g g
structure converges_to.{u v w} {R : Ring} (E' : g → g → LeftModule.{u v} R)
(Dinf : graded_module.{u 0 w} R g) : Type.{max u (v+1) (w+1)} :=
(X : exact_couple.{u 0 v w} R Z2)
(HH : is_bounded X)
(e : Π(x : g ×g g), exact_couple.E X x ≃lm E' x.1 x.2)
(s₀ : g)
(p : Π(n : g), is_bounded.B' HH (deg (k X) (n, s₀)) = 0)
(f : Π(n : g), exact_couple.D X (deg (k X) (n, s₀)) ≃lm Dinf n)
infix ` ⟹ `:25 := converges_to
definition converges_to_g [reducible] (E' : g → g → AbGroup) (Dinf : g → AbGroup) : Type :=
(λn s, LeftModule_int_of_AbGroup (E' n s)) ⟹ (λn, LeftModule_int_of_AbGroup (Dinf n))
infix ` ⟹ᵍ `:25 := converges_to_g
section
open converges_to
parameters {R : Ring} {E' : g → g → LeftModule R} {Dinf : graded_module R g} (c : E' ⟹ Dinf)
local abbreviation X := X c
local abbreviation HH := HH c
local abbreviation s₀ := s₀ c
local abbreviation Dinfdiag (n : g) (k : ) := Dinfdiag X HH (n, s₀) k
local abbreviation Einfdiag (n : g) (k : ) := Einfdiag X HH (n, s₀) k
include c
theorem is_contr_converges_to (H : Π(n s : g), is_contr (E' n s)) (n : g) : is_contr (Dinf n) :=
begin
assert H2 : Π(m : g) (k : ), is_contr (Einfdiag m k),
{ intro m k, apply is_contr_E, exact is_trunc_equiv_closed_rev -2 (equiv_of_isomorphism (e c _)) },
assert H3 : Π(m : g), is_contr (Dinfdiag m 0),
{ intro m, fapply nat.rec_down (λk, is_contr (Dinfdiag m k)),
{ exact is_bounded.B HH (deg (k X) (m, s₀)) },
{ apply Dinfdiag_stable, reflexivity },
{ intro k H, exact sorry /-note zz := is_contr_middle_of_is_exact (short_exact_mod_infpage k)-/ }},
refine @is_trunc_equiv_closed _ _ _ _ (H3 n),
apply equiv_of_isomorphism,
exact Dinfdiag0 X HH (n, s₀) (p c n) ⬝lm f c n
end
end
end left_module end left_module
open left_module open left_module
namespace pointed namespace pointed
@ -485,8 +531,7 @@ namespace pointed
open prod prod.ops fiber open prod prod.ops fiber
parameters {A : → Type*[1]} (f : Π(n : ), A n →* A (n - 1)) [Hf : Πn, is_conn_fun 1 (f n)] parameters {A : → Type*[1]} (f : Π(n : ), A n →* A (n - 1)) [Hf : Πn, is_conn_fun 1 (f n)]
include Hf include Hf
protected definition I [constructor] : Set := trunctype.mk (g ×g g) !is_trunc_prod local abbreviation I [constructor] := Z2
local abbreviation I := @pointed.I
-- definition D_sequence : graded_module r I := -- definition D_sequence : graded_module r I :=
-- λv, LeftModule_int_of_AbGroup (πc[v.2] (A (v.1))) -- λv, LeftModule_int_of_AbGroup (πc[v.2] (A (v.1)))
@ -510,8 +555,8 @@ namespace spectrum
parameters {A : → spectrum} (f : Π(s : ), A s →ₛ A (s - 1)) parameters {A : → spectrum} (f : Π(s : ), A s →ₛ A (s - 1))
protected definition I [constructor] : Set := trunctype.mk (g ×g g) !is_trunc_prod -- protected definition I [constructor] : Set := g ×g g
local abbreviation I := @spectrum.I local abbreviation I [constructor] := Z2
definition D_sequence : graded_module r I := definition D_sequence : graded_module r I :=
λv, LeftModule_int_of_AbGroup (πₛ[v.1] (A (v.2))) λv, LeftModule_int_of_AbGroup (πₛ[v.1] (A (v.2)))
@ -652,6 +697,17 @@ namespace spectrum
refine !add.assoc ⬝ ap (add s) !add.comm ⬝ !add.assoc⁻¹, refine !add.assoc ⬝ ap (add s) !add.comm ⬝ !add.assoc⁻¹,
end end
definition converges_to_sequence : (λn s, πₛ[n] (sfiber (f s))) ⟹ᵍ (λn, πₛ[n] (A ub)) :=
begin
fapply converges_to.mk,
{ exact exact_couple_sequence },
{ exact is_bounded_sequence },
{ intros, reflexivity },
{ exact ub },
{ intro n, change max0 (ub - ub) = 0, exact ap max0 (sub_self ub) },
{ intro n, reflexivity }
end
end end
-- Uncomment the next line to see that the proof uses univalence, but that there are no holes -- Uncomment the next line to see that the proof uses univalence, but that there are no holes

View file

@ -120,6 +120,25 @@ namespace eq
end eq open eq end eq open eq
namespace nat
protected definition rec_down (P : → Type) (s : ) (H0 : P s) (Hs : Πn, P (n+1) → P n) : P 0 :=
have Hp : Πn, P n → P (pred n),
begin
intro n p, cases n with n,
{ exact p },
{ exact Hs n p }
end,
have H : Πn, P (s - n),
begin
intro n, induction n with n p,
{ exact H0 },
{ exact Hp (s - n) p }
end,
transport P (nat.sub_self s) (H s)
end nat
namespace pmap namespace pmap
definition eta {A B : Type*} (f : A →* B) : pmap.mk f (respect_pt f) = f := definition eta {A B : Type*} (f : A →* B) : pmap.mk f (respect_pt f) = f :=