Spectral/pointed.hlean
2017-07-13 17:26:39 +01:00

273 lines
12 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/- equalities between pointed homotopies and other facts about pointed types/functions/homotopies -/
-- Author: Floris van Doorn
import types.pointed2 .move_to_lib
open pointed eq equiv function is_equiv unit is_trunc trunc nat algebra sigma group lift option
namespace pointed
-- /- the pointed type of (unpointed) dependent maps -/
-- definition pupi [constructor] {A : Type} (P : A → Type*) : Type* :=
-- pointed.mk' (Πa, P a)
-- definition loop_pupi_commute {A : Type} (B : A → Type*) : Ω(pupi B) ≃* pupi (λa, Ω (B a)) :=
-- pequiv_of_equiv eq_equiv_homotopy rfl
-- definition equiv_pupi_right {A : Type} {P Q : A → Type*} (g : Πa, P a ≃* Q a)
-- : pupi P ≃* pupi Q :=
-- pequiv_of_equiv (pi_equiv_pi_right g)
-- begin esimp, apply eq_of_homotopy, intros a, esimp, exact (respect_pt (g a)) end
-- definition pmap_eq_equiv {X Y : Type*} (f g : X →* Y) : (f = g) ≃ (f ~* g) :=
-- begin
-- refine eq_equiv_fn_eq_of_equiv (@pmap.sigma_char X Y) f g ⬝e _,
-- refine !sigma_eq_equiv ⬝e _,
-- refine _ ⬝e (phomotopy.sigma_char f g)⁻¹ᵉ,
-- fapply sigma_equiv_sigma,
-- { esimp, apply eq_equiv_homotopy },
-- { induction g with g gp, induction Y with Y y0, esimp, intro p, induction p, esimp at *,
-- refine !pathover_idp ⬝e _, refine _ ⬝e !eq_equiv_eq_symm,
-- apply equiv_eq_closed_right, exact !idp_con⁻¹ }
-- end
definition pmap_eq_idp {X Y : Type*} (f : X →* Y) :
pmap_eq (λx, idpath (f x)) !idp_con⁻¹ = idpath f :=
ap (λx, eq_of_phomotopy (phomotopy.mk _ x)) !inv_inv ⬝ eq_of_phomotopy_refl f
definition pfunext (X Y : Type*) : ppmap X (Ω Y) ≃* Ω (ppmap X Y) :=
(loop_ppmap_commute X Y)⁻¹ᵉ*
definition loop_phomotopy [constructor] {A B : Type*} (f : A →* B) : Type* :=
pointed.MK (f ~* f) phomotopy.rfl
definition ppcompose_left_loop_phomotopy [constructor] {A B C : Type*} (g : B →* C) {f : A →* B}
{h : A →* C} (p : g ∘* f ~* h) : loop_phomotopy f →* loop_phomotopy h :=
pmap.mk (λq, p⁻¹* ⬝* pwhisker_left g q ⬝* p)
(idp ◾** !pwhisker_left_refl ◾** idp ⬝ !trans_refl ◾** idp ⬝ !trans_left_inv)
definition ppcompose_left_loop_phomotopy' [constructor] {A B C : Type*} (g : B →* C) (f : A →* B)
: loop_phomotopy f →* loop_phomotopy (g ∘* f) :=
pmap.mk (λq, pwhisker_left g q) !pwhisker_left_refl
definition loop_ppmap_pequiv' [constructor] (A B : Type*) :
Ω(ppmap A B) ≃* loop_phomotopy (pconst A B) :=
pequiv_of_equiv (pmap_eq_equiv _ _) idp
definition ppmap_loop_pequiv' [constructor] (A B : Type*) :
loop_phomotopy (pconst A B) ≃* ppmap A (Ω B) :=
pequiv_of_equiv (!phomotopy.sigma_char ⬝e !pmap.sigma_char⁻¹ᵉ) idp
definition loop_ppmap_pequiv [constructor] (A B : Type*) : Ω(ppmap A B) ≃* ppmap A (Ω B) :=
loop_ppmap_pequiv' A B ⬝e* ppmap_loop_pequiv' A B
definition loop_ppmap_pequiv'_natural_right' {X X' : Type} (x₀ : X) (A : Type*) (f : X → X') :
psquare (loop_ppmap_pequiv' A _) (loop_ppmap_pequiv' A _)
(Ω→ (ppcompose_left (pmap_of_map f x₀)))
(ppcompose_left_loop_phomotopy' (pmap_of_map f x₀) !pconst) :=
begin
fapply phomotopy.mk,
{ esimp, intro p,
refine _ ⬝ ap011 (λx y, phomotopy_of_eq (ap1_gen _ x y _))
proof !eq_of_phomotopy_refl⁻¹ qed proof !eq_of_phomotopy_refl⁻¹ qed,
refine _ ⬝ ap phomotopy_of_eq !ap1_gen_idp_left⁻¹,
exact !phomotopy_of_eq_pcompose_left⁻¹ },
{ refine _ ⬝ !idp_con⁻¹, exact sorry }
end
definition loop_ppmap_pequiv'_natural_right {X X' : Type*} (A : Type*) (f : X →* X') :
psquare (loop_ppmap_pequiv' A X) (loop_ppmap_pequiv' A X')
(Ω→ (ppcompose_left f)) (ppcompose_left_loop_phomotopy f !pcompose_pconst) :=
begin
induction X' with X' x₀', induction f with f f₀, esimp at f, esimp at f₀, induction f₀,
apply psquare_of_phomotopy,
exact sorry
end
definition ppmap_loop_pequiv'_natural_right {X X' : Type*} (A : Type*) (f : X →* X') :
psquare (ppmap_loop_pequiv' A X) (ppmap_loop_pequiv' A X')
(ppcompose_left_loop_phomotopy f !pcompose_pconst) (ppcompose_left (Ω→ f)) :=
begin
exact sorry
end
definition loop_pmap_commute_natural_right_direct {X X' : Type*} (A : Type*) (f : X →* X') :
psquare (loop_ppmap_pequiv A X) (loop_ppmap_pequiv A X')
(Ω→ (ppcompose_left f)) (ppcompose_left (Ω→ f)) :=
begin
induction X' with X' x₀', induction f with f f₀, esimp at f, esimp at f₀, induction f₀,
-- refine _ ⬝* _ ◾* _, rotate 4,
fapply phomotopy.mk,
{ intro p, esimp, esimp [pmap_eq_equiv, pcompose_pconst], exact sorry },
{ exact sorry }
end
definition loop_pmap_commute_natural_left {A A' : Type*} (X : Type*) (f : A' →* A) :
psquare (loop_ppmap_commute A X) (loop_ppmap_commute A' X)
(Ω→ (ppcompose_right f)) (ppcompose_right f) :=
sorry
definition loop_pmap_commute_natural_right {X X' : Type*} (A : Type*) (f : X →* X') :
psquare (loop_ppmap_commute A X) (loop_ppmap_commute A X')
(Ω→ (ppcompose_left f)) (ppcompose_left (Ω→ f)) :=
loop_ppmap_pequiv'_natural_right A f ⬝h* ppmap_loop_pequiv'_natural_right A f
/-
Do we want to use a structure of homotopies between pointed homotopies? Or are equalities fine?
If we set up things more generally, we could define this as
"pointed homotopies between the dependent pointed maps p and q"
-/
structure phomotopy2 {A B : Type*} {f g : A →* B} (p q : f ~* g) : Type :=
(homotopy_eq : p ~ q)
(homotopy_pt_eq : whisker_right (respect_pt g) (homotopy_eq pt) ⬝ to_homotopy_pt q =
to_homotopy_pt p)
/- this sets it up more generally, for illustrative purposes -/
structure ppi' (A : Type*) (P : A → Type) (p : P pt) :=
(to_fun : Π a : A, P a)
(resp_pt : to_fun (Point A) = p)
attribute ppi'.to_fun [coercion]
definition ppi_homotopy' {A : Type*} {P : A → Type} {x : P pt} (f g : ppi' A P x) : Type :=
ppi' A (λa, f a = g a) (ppi'.resp_pt f ⬝ (ppi'.resp_pt g)⁻¹)
definition ppi_homotopy2' {A : Type*} {P : A → Type} {x : P pt} {f g : ppi' A P x}
(p q : ppi_homotopy' f g) : Type :=
ppi_homotopy' p q
-- infix ` ~*2 `:50 := phomotopy2
-- variables {A B : Type*} {f g : A →* B} (p q : f ~* g)
-- definition phomotopy_eq_equiv_phomotopy2 : p = q ≃ p ~*2 q :=
-- sorry
/- Homotopy between a function and its eta expansion -/
definition pmap_eta {X Y : Type*} (f : X →* Y) : f ~* pmap.mk f (pmap.resp_pt f) :=
begin
fapply phomotopy.mk,
reflexivity,
esimp, exact !idp_con
end
-- this should replace pnatural_square
definition pnatural_square2 {A B : Type} (X : B → Type*) (Y : B → Type*) {f g : A → B}
(h : Πa, X (f a) →* Y (g a)) {a a' : A} (p : a = a') :
h a' ∘* ptransport X (ap f p) ~* ptransport Y (ap g p) ∘* h a :=
by induction p; exact !pcompose_pid ⬝* !pid_pcompose⁻¹*
definition ptransport_ap {A B : Type} (X : B → Type*) (f : A → B) {a a' : A} (p : a = a') :
ptransport X (ap f p) ~* ptransport (X ∘ f) p :=
by induction p; reflexivity
definition ptransport_constant (A : Type) (B : Type*) {a a' : A} (p : a = a') :
ptransport (λ(a : A), B) p ~* pid B :=
by induction p; reflexivity
definition ptransport_natural {A : Type} (X : A → Type*) (Y : A → Type*)
(h : Πa, X a →* Y a) {a a' : A} (p : a = a') :
h a' ∘* ptransport X p ~* ptransport Y p ∘* h a :=
by induction p; exact !pcompose_pid ⬝* !pid_pcompose⁻¹*
section psquare
variables {A A' A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type*}
{f₁₀ f₁₀' : A₀₀ →* A₂₀} {f₃₀ : A₂₀ →* A₄₀}
{f₀₁ f₀₁' : A₀₀ →* A₀₂} {f₂₁ f₂₁' : A₂₀ →* A₂₂} {f₄₁ : A₄₀ →* A₄₂}
{f₁₂ f₁₂' : A₀₂ →* A₂₂} {f₃₂ : A₂₂ →* A₄₂}
{f₀₃ : A₀₂ →* A₀₄} {f₂₃ : A₂₂ →* A₂₄} {f₄₃ : A₄₂ →* A₄₄}
{f₁₄ : A₀₄ →* A₂₄} {f₃₄ : A₂₄ →* A₄₄}
definition ptranspose (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare f₀₁ f₂₁ f₁₀ f₁₂ :=
p⁻¹*
definition hsquare_of_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : hsquare f₁₀ f₁₂ f₀₁ f₂₁ :=
p
definition homotopy_group_functor_hsquare (n : ) (h : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
psquare (π→[n] f₁₀) (π→[n] f₁₂)
(π→[n] f₀₁) (π→[n] f₂₁) :=
sorry
end psquare
definition ap1_pequiv_ap {A : Type} (B : A → Type*) {a a' : A} (p : a = a') :
Ω→ (pequiv_ap B p) ~* pequiv_ap (Ω ∘ B) p :=
begin induction p, apply ap1_pid end
definition pequiv_ap_natural {A : Type} (B C : A → Type*) {a a' : A} (p : a = a')
(f : Πa, B a →* C a) :
psquare (pequiv_ap B p) (pequiv_ap C p) (f a) (f a') :=
begin induction p, exact phrfl end
definition is_contr_loop (A : Type*) [is_set A] : is_contr (Ω A) :=
is_contr.mk idp (λa, !is_prop.elim)
definition is_contr_loop_of_is_contr {A : Type*} (H : is_contr A) : is_contr (Ω A) :=
is_contr_loop A
definition is_contr_punit [instance] : is_contr punit :=
is_contr_unit
definition pequiv_of_is_contr (A B : Type*) (HA : is_contr A) (HB : is_contr B) : A ≃* B :=
pequiv_punit_of_is_contr A _ ⬝e* (pequiv_punit_of_is_contr B _)⁻¹ᵉ*
definition loop_pequiv_punit_of_is_set (X : Type*) [is_set X] : Ω X ≃* punit :=
pequiv_punit_of_is_contr _ (is_contr_loop X)
definition loop_punit : Ω punit ≃* punit :=
loop_pequiv_punit_of_is_set punit
definition phomotopy_of_is_contr_cod [constructor] {X Y : Type*} (f g : X →* Y) [is_contr Y] :
f ~* g :=
phomotopy.mk (λa, !eq_of_is_contr) !eq_of_is_contr
definition phomotopy_of_is_contr_dom [constructor] {X Y : Type*} (f g : X →* Y) [is_contr X] :
f ~* g :=
phomotopy.mk (λa, ap f !is_prop.elim ⬝ respect_pt f ⬝ (respect_pt g)⁻¹ ⬝ ap g !is_prop.elim)
begin rewrite [▸*, is_prop_elim_self, +ap_idp, idp_con, con_idp, inv_con_cancel_right] end
definition add_point_over [unfold 3] {A : Type} (B : A → Type*) : A₊ → Type*
| (some a) := B a
| none := plift punit
definition add_point_over_pequiv {A : Type} {B B' : A → Type*} (e : Πa, B a ≃* B' a) :
Π(a : A₊), add_point_over B a ≃* add_point_over B' a
| (some a) := e a
| none := pequiv.rfl
definition phomotopy_group_plift_punit.{u} (n : ) [H : is_at_least_two n] :
πag[n] (plift.{0 u} punit) ≃g trivial_ab_group_lift.{u} :=
begin
induction H with n,
have H : 0 <[] n+2, from !zero_lt_succ,
have is_set unit, from _,
have is_trunc (trunc_index.of_nat 0) punit, from this,
exact isomorphism_of_is_contr (@trivial_homotopy_group_of_is_trunc _ _ _ !is_trunc_lift H)
!is_trunc_lift
end
definition pmap_of_map_pt [constructor] {A : Type*} {B : Type} (f : A → B) :
A →* pointed.MK B (f pt) :=
pmap.mk f idp
/- TODO: computation rule -/
open pi
definition fiberwise_pointed_map_rec {A : Type} {B : A → Type*}
(P : Π(C : A → Type*) (g : Πa, B a →* C a), Type)
(H : Π(C : A → Type) (g : Πa, B a → C a), P _ (λa, pmap_of_map_pt (g a))) :
Π⦃C : A → Type*⦄ (g : Πa, B a →* C a), P C g :=
begin
refine equiv_rect (!sigma_pi_equiv_pi_sigma ⬝e
arrow_equiv_arrow_right A !pType.sigma_char⁻¹ᵉ) _ _,
intro R, cases R with R r₀,
refine equiv_rect (!sigma_pi_equiv_pi_sigma ⬝e
pi_equiv_pi_right (λa, !pmap.sigma_char⁻¹ᵉ)) _ _,
intro g, cases g with g g₀, esimp at (g, g₀),
revert g₀, change (Π(g : (λa, g a (Point (B a))) ~ r₀), _),
refine homotopy.rec_idp _ _, esimp,
apply H
end
end pointed