130 lines
4.5 KiB
Text
130 lines
4.5 KiB
Text
/-
|
||
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn, Egbert Rijke
|
||
|
||
Constructions with groups
|
||
-/
|
||
|
||
import .quotient_group .free_commutative_group
|
||
|
||
open eq algebra is_trunc set_quotient relation sigma prod sum list trunc function equiv sigma.ops
|
||
|
||
namespace group
|
||
|
||
section
|
||
|
||
parameters {I : Type} [is_set I] (Y : I → AbGroup)
|
||
variables {A' : AbGroup} {Y' : I → AbGroup}
|
||
|
||
definition dirsum_carrier : AbGroup := free_ab_group (Σi, Y i)
|
||
local abbreviation ι [constructor] := @free_ab_group_inclusion
|
||
inductive dirsum_rel : dirsum_carrier → Type :=
|
||
| rmk : Πi y₁ y₂, dirsum_rel (ι ⟨i, y₁⟩ * ι ⟨i, y₂⟩ * (ι ⟨i, y₁ * y₂⟩)⁻¹)
|
||
|
||
definition dirsum : AbGroup := quotient_ab_group_gen dirsum_carrier (λg, ∥dirsum_rel g∥)
|
||
|
||
-- definition dirsum_carrier_incl [constructor] (i : I) : Y i →g dirsum_carrier :=
|
||
|
||
definition dirsum_incl [constructor] (i : I) : Y i →g dirsum :=
|
||
homomorphism.mk (λy, class_of (ι ⟨i, y⟩))
|
||
begin intro g h, symmetry, apply gqg_eq_of_rel, apply tr, apply dirsum_rel.rmk end
|
||
|
||
parameter {Y}
|
||
definition dirsum.rec {P : dirsum → Type} [H : Πg, is_prop (P g)]
|
||
(h₁ : Πi (y : Y i), P (dirsum_incl i y)) (h₂ : P 1) (h₃ : Πg h, P g → P h → P (g * h)) :
|
||
Πg, P g :=
|
||
begin
|
||
refine @set_quotient.rec_prop _ _ _ H _,
|
||
refine @set_quotient.rec_prop _ _ _ (λx, !H) _,
|
||
esimp, intro l, induction l with s l ih,
|
||
exact h₂,
|
||
induction s with v v,
|
||
induction v with i y,
|
||
exact h₃ _ _ (h₁ i y) ih,
|
||
induction v with i y,
|
||
refine h₃ (gqg_map _ _ (class_of [inr ⟨i, y⟩])) _ _ ih,
|
||
refine transport P _ (h₁ i y⁻¹),
|
||
refine _ ⬝ !one_mul,
|
||
refine _ ⬝ ap (λx, mul x _) (to_respect_zero (dirsum_incl i)),
|
||
apply gqg_eq_of_rel',
|
||
apply tr, esimp,
|
||
refine transport dirsum_rel _ (dirsum_rel.rmk i y⁻¹ y),
|
||
rewrite [mul.left_inv, mul.assoc],
|
||
end
|
||
|
||
definition dirsum_homotopy {φ ψ : dirsum →g A'}
|
||
(h : Πi (y : Y i), φ (dirsum_incl i y) = ψ (dirsum_incl i y)) : φ ~ ψ :=
|
||
begin
|
||
refine dirsum.rec _ _ _,
|
||
exact h,
|
||
refine !to_respect_zero ⬝ !to_respect_zero⁻¹,
|
||
intro g₁ g₂ h₁ h₂, rewrite [* to_respect_mul, h₁, h₂]
|
||
end
|
||
|
||
definition dirsum_elim_resp_quotient (f : Πi, Y i →g A') (g : dirsum_carrier)
|
||
(r : ∥dirsum_rel g∥) : free_ab_group_elim (λv, f v.1 v.2) g = 1 :=
|
||
begin
|
||
induction r with r, induction r,
|
||
rewrite [to_respect_mul, to_respect_inv, to_respect_mul, ▸*, ↑foldl, *one_mul,
|
||
to_respect_mul], apply mul.right_inv
|
||
end
|
||
|
||
definition dirsum_elim [constructor] (f : Πi, Y i →g A') : dirsum →g A' :=
|
||
gqg_elim _ (free_ab_group_elim (λv, f v.1 v.2)) (dirsum_elim_resp_quotient f)
|
||
|
||
definition dirsum_elim_compute (f : Πi, Y i →g A') (i : I) (y : Y i) :
|
||
dirsum_elim f (dirsum_incl i y) = f i y :=
|
||
begin
|
||
apply one_mul
|
||
end
|
||
|
||
definition dirsum_elim_unique (f : Πi, Y i →g A') (k : dirsum →g A')
|
||
(H : Πi, k ∘g dirsum_incl i ~ f i) : k ~ dirsum_elim f :=
|
||
begin
|
||
apply gqg_elim_unique,
|
||
apply free_ab_group_elim_unique,
|
||
intro x, induction x with i y, exact H i y
|
||
end
|
||
|
||
end
|
||
|
||
variables {I J : Set} {Y Y' Y'' : I → AbGroup}
|
||
|
||
definition dirsum_functor [constructor] (f : Πi, Y i →g Y' i) : dirsum Y →g dirsum Y' :=
|
||
dirsum_elim (λi, dirsum_incl Y' i ∘g f i)
|
||
|
||
theorem dirsum_functor_compose (f' : Πi, Y' i →g Y'' i) (f : Πi, Y i →g Y' i) :
|
||
dirsum_functor f' ∘a dirsum_functor f ~ dirsum_functor (λi, f' i ∘a f i) :=
|
||
begin
|
||
apply dirsum_homotopy,
|
||
intro i y, reflexivity,
|
||
end
|
||
|
||
variable (Y)
|
||
definition dirsum_functor_gid : dirsum_functor (λi, gid (Y i)) ~ gid (dirsum Y) :=
|
||
begin
|
||
apply dirsum_homotopy,
|
||
intro i y, reflexivity,
|
||
end
|
||
variable {Y}
|
||
|
||
definition dirsum_functor_mul (f f' : Πi, Y i →g Y' i) :
|
||
homomorphism_mul (dirsum_functor f) (dirsum_functor f') ~
|
||
dirsum_functor (λi, homomorphism_mul (f i) (f' i)) :=
|
||
begin
|
||
apply dirsum_homotopy,
|
||
intro i y, exact sorry
|
||
end
|
||
|
||
definition dirsum_functor_homotopy {f f' : Πi, Y i →g Y' i} (p : f ~2 f') :
|
||
dirsum_functor f ~ dirsum_functor f' :=
|
||
begin
|
||
apply dirsum_homotopy,
|
||
intro i y, exact sorry
|
||
end
|
||
|
||
definition dirsum_functor_left [constructor] (f : J → I) : dirsum (Y ∘ f) →g dirsum Y :=
|
||
dirsum_elim (λj, dirsum_incl Y (f j))
|
||
|
||
end group
|