Spectral/homology/basic.hlean
2017-07-17 13:58:36 +01:00

219 lines
11 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2017 Yuri Sulyma, Favonia
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yuri Sulyma, Favonia, Floris van Doorn
Reduced homology theories
-/
import ..homotopy.spectrum ..homotopy.EM ..algebra.arrow_group ..algebra.direct_sum ..homotopy.fwedge ..homotopy.wedge ..choice ..homotopy.pushout ..move_to_lib
open eq spectrum int pointed group algebra sphere nat equiv susp is_trunc
function fwedge cofiber lift is_equiv choice algebra pi smash wedge
namespace homology
/- homology theory -/
structure homology_theory.{u} : Type.{u+1} :=
(HH : → pType.{u} → AbGroup.{u})
(Hh : Π(n : ) {X Y : Type*} (f : X →* Y), HH n X →g HH n Y)
(Hpid : Π(n : ) {X : Type*} (x : HH n X), Hh n (pid X) x = x)
(Hpcompose : Π(n : ) {X Y Z : Type*} (f : Y →* Z) (g : X →* Y),
Hh n (f ∘* g) ~ Hh n f ∘ Hh n g)
(Hpsusp : Π(n : ) (X : Type*), HH (succ n) (psusp X) ≃g HH n X)
(Hpsusp_natural : Π(n : ) {X Y : Type*} (f : X →* Y),
Hpsusp n Y ∘ Hh (succ n) (psusp_functor f) ~ Hh n f ∘ Hpsusp n X)
(Hexact : Π(n : ) {X Y : Type*} (f : X →* Y), is_exact_g (Hh n f) (Hh n (pcod f)))
(Hadditive : Π(n : ) {I : Set.{u}} (X : I → Type*), is_equiv
(dirsum_elim (λi, Hh n (pinl i)) : dirsum (λi, HH n (X i)) → HH n ( X)))
structure ordinary_homology_theory.{u} extends homology_theory.{u} : Type.{u+1} :=
(Hdimension : Π(n : ), n ≠ 0 → is_contr (HH n (plift (psphere 0))))
section
universe variable u
parameter (theory : homology_theory.{u})
open homology_theory
theorem HH_base_indep (n : ) {A : Type} (a b : A)
: HH theory n (pType.mk A a) ≃g HH theory n (pType.mk A b) :=
calc HH theory n (pType.mk A a) ≃g HH theory (int.succ n) (psusp A) : by exact (Hpsusp theory n (pType.mk A a)) ⁻¹ᵍ
... ≃g HH theory n (pType.mk A b) : by exact Hpsusp theory n (pType.mk A b)
theorem Hh_homotopy' (n : ) {A B : Type*} (f : A → B) (p q : f pt = pt)
: Hh theory n (pmap.mk f p) ~ Hh theory n (pmap.mk f q) := λ x,
calc Hh theory n (pmap.mk f p) x
= Hh theory n (pmap.mk f p) (Hpsusp theory n A ((Hpsusp theory n A)⁻¹ᵍ x))
: by exact ap (Hh theory n (pmap.mk f p)) (equiv.to_right_inv (equiv_of_isomorphism (Hpsusp theory n A)) x)⁻¹
... = Hpsusp theory n B (Hh theory (succ n) (pmap.mk (susp.functor f) !refl) ((Hpsusp theory n A)⁻¹ x))
: by exact (Hpsusp_natural theory n (pmap.mk f p) ((Hpsusp theory n A)⁻¹ᵍ x))⁻¹
... = Hh theory n (pmap.mk f q) (Hpsusp theory n A ((Hpsusp theory n A)⁻¹ x))
: by exact Hpsusp_natural theory n (pmap.mk f q) ((Hpsusp theory n A)⁻¹ x)
... = Hh theory n (pmap.mk f q) x
: by exact ap (Hh theory n (pmap.mk f q)) (equiv.to_right_inv (equiv_of_isomorphism (Hpsusp theory n A)) x)
theorem Hh_homotopy (n : ) {A B : Type*} (f g : A →* B) (h : f ~ g) : Hh theory n f ~ Hh theory n g := λ x,
calc Hh theory n f x
= Hh theory n (pmap.mk f (respect_pt f)) x : by exact ap (λ f, Hh theory n f x) (pmap.eta f)⁻¹
... = Hh theory n (pmap.mk f (h pt ⬝ respect_pt g)) x : by exact Hh_homotopy' n f (respect_pt f) (h pt ⬝ respect_pt g) x
... = Hh theory n g x : by exact ap (λ f, Hh theory n f x) (@pmap_eq _ _ (pmap.mk f (h pt ⬝ respect_pt g)) _ h (refl (h pt ⬝ respect_pt g)))
definition HH_isomorphism (n : ) {A B : Type*} (e : A ≃* B)
: HH theory n A ≃g HH theory n B :=
begin
fapply isomorphism.mk,
{ exact Hh theory n e },
fapply adjointify,
{ exact Hh theory n e⁻¹ᵉ* },
{ intro x, exact calc
Hh theory n e (Hh theory n e⁻¹ᵉ* x)
= Hh theory n (e ∘* e⁻¹ᵉ*) x : by exact (Hpcompose theory n e e⁻¹ᵉ* x)⁻¹
... = Hh theory n !pid x : by exact Hh_homotopy n (e ∘* e⁻¹ᵉ*) !pid (to_right_inv e) x
... = x : by exact Hpid theory n x
},
{ intro x, exact calc
Hh theory n e⁻¹ᵉ* (Hh theory n e x)
= Hh theory n (e⁻¹ᵉ* ∘* e) x : by exact (Hpcompose theory n e⁻¹ᵉ* e x)⁻¹
... = Hh theory n !pid x : by exact Hh_homotopy n (e⁻¹ᵉ* ∘* e) !pid (to_left_inv e) x
... = x : by exact Hpid theory n x
}
end
definition Hadditive_equiv (n : ) {I : Type} [is_set I] (X : I → Type*)
: dirsum (λi, HH theory n (X i)) ≃g HH theory n ( X) :=
isomorphism.mk (dirsum_elim (λi, Hh theory n (fwedge.pinl i))) (Hadditive theory n X)
definition Hadditive' (n : ) {I : Type₀} [is_set I] (X : I → pType.{u}) : is_equiv
(dirsum_elim (λi, Hh theory n (pinl i)) : dirsum (λi, HH theory n (X i)) → HH theory n ( X)) :=
let iso3 := HH_isomorphism n (fwedge_down_left.{0 u} X) in
let iso2 := Hadditive_equiv n (X ∘ down.{0 u}) in
let iso1 := (dirsum_down_left.{0 u} (λ i, HH theory n (X i)))⁻¹ᵍ in
let iso := calc dirsum (λ i, HH theory n (X i))
≃g dirsum (λ i, HH theory n (X (down.{0 u} i))) : by exact iso1
... ≃g HH theory n ( (X ∘ down.{0 u})) : by exact iso2
... ≃g HH theory n ( X) : by exact iso3
in
begin
fapply is_equiv_of_equiv_of_homotopy,
{ exact equiv_of_isomorphism iso },
{ refine dirsum_homotopy _, intro i y,
refine homomorphism_comp_compute iso3 (iso2 ∘g iso1) _ ⬝ _,
refine ap iso3 (homomorphism_comp_compute iso2 iso1 _) ⬝ _,
refine ap (iso3 ∘ iso2) _ ⬝ _,
{ exact dirsum_incl (λ i, HH theory n (X (down i))) (up i) y },
{ refine _ ⬝ dirsum_elim_compute (λi, dirsum_incl (λ i, HH theory n (X (down.{0 u} i))) (up i)) i y,
reflexivity
},
refine ap iso3 _ ⬝ _,
{ exact Hh theory n (fwedge.pinl (up i)) y },
{ refine _ ⬝ dirsum_elim_compute (λi, Hh theory n (fwedge.pinl i)) (up i) y,
reflexivity
},
refine (Hpcompose theory n (fwedge_down_left X) (fwedge.pinl (up i)) y)⁻¹ ⬝ _,
refine Hh_homotopy n (fwedge_down_left.{0 u} X ∘* fwedge.pinl (up i)) (fwedge.pinl i) (fwedge_pmap_beta (λ i, pinl (down i)) (up i)) y ⬝ _,
refine (dirsum_elim_compute (λ i, Hh theory n (pinl i)) i y)⁻¹
}
end
definition Hadditive'_equiv (n : ) {I : Type₀} [is_set I] (X : I → Type*)
: dirsum (λi, HH theory n (X i)) ≃g HH theory n ( X) :=
isomorphism.mk (dirsum_elim (λi, Hh theory n (fwedge.pinl i))) (Hadditive' n X)
definition Hfwedge (n : ) {I : Type} [is_set I] (X : I → Type*): HH theory n ( X) ≃g dirsum (λi, HH theory n (X i)) :=
(isomorphism.mk _ (Hadditive theory n X))⁻¹ᵍ
definition Hpwedge (n : ) (A B : Type*) : HH theory n (pwedge A B) ≃g HH theory n A ×g HH theory n B :=
calc HH theory n (A B) ≃g HH theory n ( (bool.rec A B)) : by exact HH_isomorphism n (pwedge_pequiv_fwedge A B)
... ≃g dirsum (λb, HH theory n (bool.rec A B b)) : by exact (Hadditive'_equiv n (bool.rec A B))⁻¹ᵍ
... ≃g dirsum (bool.rec (HH theory n A) (HH theory n B)) : by exact dirsum_isomorphism (bool.rec !isomorphism.refl !isomorphism.refl)
... ≃g HH theory n A ×g HH theory n B : by exact binary_dirsum (HH theory n A) (HH theory n B)
end
section
universe variables u v
parameter (theory : homology_theory.{max u v})
open homology_theory
definition Hplift_psusp (n : ) (A : Type*): HH theory (n + 1) (plift.{u v} (psusp A)) ≃g HH theory n (plift.{u v} A) :=
calc HH theory (n + 1) (plift.{u v} (psusp A)) ≃g HH theory (n + 1) (psusp (plift.{u v} A)) : by exact HH_isomorphism theory (n + 1) (plift_psusp _)
... ≃g HH theory n (plift.{u v} A) : by exact Hpsusp theory n (plift.{u v} A)
definition Hplift_pwedge (n : ) (A B : Type*): HH theory n (plift.{u v} (A B)) ≃g HH theory n (plift.{u v} A) ×g HH theory n (plift.{u v} B) :=
calc HH theory n (plift.{u v} (A B)) ≃g HH theory n (plift.{u v} A plift.{u v} B) : by exact HH_isomorphism theory n (plift_pwedge A B)
... ≃g HH theory n (plift.{u v} A) ×g HH theory n (plift.{u v} B) : by exact Hpwedge theory n (plift.{u v} A) (plift.{u v} B)
definition Hplift_isomorphism (n : ) {A B : Type*} (e : A ≃* B) : HH theory n (plift.{u v} A) ≃g HH theory n (plift.{u v} B) :=
HH_isomorphism theory n (!pequiv_plift⁻¹ᵉ* ⬝e* e ⬝e* !pequiv_plift)
end
/- homology theory associated to a prespectrum -/
definition homology (X : Type*) (E : prespectrum) (n : ) : AbGroup :=
pshomotopy_group n (smash_prespectrum X E)
/- an alternative definition, which might be a bit harder to work with -/
definition homology_spectrum (X : Type*) (E : spectrum) (n : ) : AbGroup :=
shomotopy_group n (smash_spectrum X E)
definition parametrized_homology {X : Type*} (E : X → spectrum) (n : ) : AbGroup :=
sorry
definition ordinary_homology [reducible] (X : Type*) (G : AbGroup) (n : ) : AbGroup :=
homology X (EM_spectrum G) n
definition ordinary_homology_Z [reducible] (X : Type*) (n : ) : AbGroup :=
ordinary_homology X ag n
notation `H_` n `[`:0 X:0 `, ` E:0 `]`:0 := homology X E n
notation `H_` n `[`:0 X:0 `]`:0 := ordinary_homology_Z X n
notation `pH_` n `[`:0 binders `, ` r:(scoped E, parametrized_homology E n) `]`:0 := r
definition unpointed_homology (X : Type) (E : spectrum) (n : ) : AbGroup :=
H_ n[X₊, E]
definition homology_functor [constructor] {X Y : Type*} {E F : prespectrum} (f : X →* Y)
(g : E →ₛ F) (n : ) : homology X E n →g homology Y F n :=
pshomotopy_group_fun n (smash_prespectrum_fun f g)
definition homology_theory_spectrum_is_exact.{u} (E : spectrum.{u}) (n : ) {X Y : Type*} (f : X →* Y) :
is_exact_g (homology_functor f (sid (gen_spectrum.to_prespectrum E)) n)
(homology_functor (pcod f) (sid (gen_spectrum.to_prespectrum E)) n) :=
begin
esimp[is_exact_g],
-- fconstructor,
-- { intro a, exact sorry },
-- { intro a, exact sorry }
exact sorry
end
definition homology_theory_spectrum.{u} [constructor] (E : spectrum.{u}) : homology_theory.{u} :=
begin
fapply homology_theory.mk,
exact (λn X, H_ n[X, E]),
exact (λn X Y f, homology_functor f (sid E) n),
exact sorry, -- Hid is uninteresting but potentially very hard to prove
exact sorry,
exact sorry,
exact sorry,
apply homology_theory_spectrum_is_exact,
exact sorry
-- sorry
-- sorry
-- sorry
-- sorry
-- sorry
-- sorry
-- (λn A, H^n[A, Y])
-- (λn A B f, cohomology_isomorphism f Y n)
-- (λn A, cohomology_isomorphism_refl A Y n)
-- (λn A B f, cohomology_functor f Y n)
-- (λn A B f g p, cohomology_functor_phomotopy p Y n)
-- (λn A B f x, cohomology_functor_phomotopy_refl f Y n x)
-- (λn A x, cohomology_functor_pid A Y n x)
-- (λn A B C g f x, cohomology_functor_pcompose g f Y n x)
-- (λn A, cohomology_psusp A Y n)
-- (λn A B f, cohomology_psusp_natural f Y n)
-- (λn A B f, cohomology_exact f Y n)
-- (λn I A H, spectrum_additive H A Y n)
end
end homology