Spectral/homotopy/smash.hlean
2017-06-07 00:54:52 -04:00

936 lines
43 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Authors: Floris van Doorn
import homotopy.smash types.pointed2 .pushout homotopy.red_susp
open bool pointed eq equiv is_equiv sum bool prod unit circle cofiber prod.ops wedge is_trunc
function red_susp unit
/- To prove: Σ(X × Y) ≃ ΣX ΣY Σ(X ∧ Y) (notation means suspension, wedge, smash) -/
/- To prove: Σ(X ∧ Y) ≃ X ★ Y (?) (notation means suspension, smash, join) -/
/- To prove: A ∧ S¹ ≃ ΣA -/
/- associativity is proven in smash_adjoint -/
variables {A A' B B' C C' D E F : Type*}
namespace smash
definition elim_gluel' {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (a a' : A) :
ap (smash.elim Pmk Pl Pr Pgl Pgr) (gluel' a a') = Pgl a ⬝ (Pgl a')⁻¹ :=
!ap_con ⬝ whisker_left _ !ap_inv ⬝ !elim_gluel ◾ !elim_gluel⁻²
definition elim_gluer' {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (b b' : B) :
ap (smash.elim Pmk Pl Pr Pgl Pgr) (gluer' b b') = Pgr b ⬝ (Pgr b')⁻¹ :=
!ap_con ⬝ whisker_left _ !ap_inv ⬝ !elim_gluer ◾ !elim_gluer⁻²
definition elim_gluel'_same {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (a : A) :
elim_gluel' Pgl Pgr a a =
ap02 (smash.elim Pmk Pl Pr Pgl Pgr) (con.right_inv (gluel a)) ⬝ (con.right_inv (Pgl a))⁻¹ :=
begin
refine _ ⬝ whisker_right _ (eq_top_of_square (!ap_con_right_inv_sq))⁻¹,
refine _ ⬝ whisker_right _ !con_idp⁻¹,
refine _ ⬝ !con.assoc⁻¹,
apply whisker_left,
apply eq_con_inv_of_con_eq, symmetry,
apply con_right_inv_natural
end
definition elim_gluer'_same {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (b : B) :
elim_gluer' Pgl Pgr b b =
ap02 (smash.elim Pmk Pl Pr Pgl Pgr) (con.right_inv (gluer b)) ⬝ (con.right_inv (Pgr b))⁻¹ :=
begin
refine _ ⬝ whisker_right _ (eq_top_of_square (!ap_con_right_inv_sq))⁻¹,
refine _ ⬝ whisker_right _ !con_idp⁻¹,
refine _ ⬝ !con.assoc⁻¹,
apply whisker_left,
apply eq_con_inv_of_con_eq, symmetry,
apply con_right_inv_natural
end
definition elim'_gluel'_pt {P : Type} {Pmk : Πa b, P}
(Pgl : Πa : A, Pmk a pt = Pmk pt pt) (Pgr : Πb : B, Pmk pt b = Pmk pt pt)
(a : A) (ql : Pgl pt = idp) (qr : Pgr pt = idp) :
ap (smash.elim' Pmk Pgl Pgr ql qr) (gluel' a pt) = Pgl a :=
!elim_gluel' ⬝ whisker_left _ ql⁻²
definition elim'_gluer'_pt {P : Type} {Pmk : Πa b, P}
(Pgl : Πa : A, Pmk a pt = Pmk pt pt) (Pgr : Πb : B, Pmk pt b = Pmk pt pt)
(b : B) (ql : Pgl pt = idp) (qr : Pgr pt = idp) :
ap (smash.elim' Pmk Pgl Pgr ql qr) (gluer' b pt) = Pgr b :=
!elim_gluer' ⬝ whisker_left _ qr⁻²
protected definition rec_eq {A B : Type*} {C : Type} {f g : smash A B → C}
(Pmk : Πa b, f (smash.mk a b) = g (smash.mk a b))
(Pl : f auxl = g auxl) (Pr : f auxr = g auxr)
(Pgl : Πa, square (Pmk a pt) Pl (ap f (gluel a)) (ap g (gluel a)))
(Pgr : Πb, square (Pmk pt b) Pr (ap f (gluer b)) (ap g (gluer b))) (x : smash' A B) : f x = g x :=
begin
induction x with a b a b,
{ exact Pmk a b },
{ exact Pl },
{ exact Pr },
{ apply eq_pathover, apply Pgl },
{ apply eq_pathover, apply Pgr }
end
definition rec_eq_gluel {A B : Type*} {C : Type} {f g : smash A B → C}
{Pmk : Πa b, f (smash.mk a b) = g (smash.mk a b)}
{Pl : f auxl = g auxl} {Pr : f auxr = g auxr}
(Pgl : Πa, square (Pmk a pt) Pl (ap f (gluel a)) (ap g (gluel a)))
(Pgr : Πb, square (Pmk pt b) Pr (ap f (gluer b)) (ap g (gluer b))) (a : A) :
natural_square (smash.rec_eq Pmk Pl Pr Pgl Pgr) (gluel a) = Pgl a :=
begin
refine ap square_of_pathover !rec_gluel ⬝ _,
apply to_right_inv !eq_pathover_equiv_square
end
definition rec_eq_gluer {A B : Type*} {C : Type} {f g : smash A B → C}
{Pmk : Πa b, f (smash.mk a b) = g (smash.mk a b)}
{Pl : f auxl = g auxl} {Pr : f auxr = g auxr}
(Pgl : Πa, square (Pmk a pt) Pl (ap f (gluel a)) (ap g (gluel a)))
(Pgr : Πb, square (Pmk pt b) Pr (ap f (gluer b)) (ap g (gluer b))) (b : B) :
natural_square (smash.rec_eq Pmk Pl Pr Pgl Pgr) (gluer b) = Pgr b :=
begin
refine ap square_of_pathover !rec_gluer ⬝ _,
apply to_right_inv !eq_pathover_equiv_square
end
/- the functorial action of the smash product -/
definition smash_functor' [unfold 7] (f : A →* C) (g : B →* D) : A ∧ B → C ∧ D :=
begin
intro x, induction x,
{ exact smash.mk (f a) (g b) },
{ exact auxl },
{ exact auxr },
{ exact ap (smash.mk (f a)) (respect_pt g) ⬝ gluel (f a) },
{ exact ap (λa, smash.mk a (g b)) (respect_pt f) ⬝ gluer (g b) }
end
definition smash_functor [constructor] (f : A →* C) (g : B →* D) : A ∧ B →* C ∧ D :=
begin
fapply pmap.mk,
{ exact smash_functor' f g },
{ exact ap011 smash.mk (respect_pt f) (respect_pt g) },
end
infixr ` ∧→ `:65 := smash_functor
definition functor_gluel (f : A →* C) (g : B →* D) (a : A) :
ap (f ∧→ g) (gluel a) = ap (smash.mk (f a)) (respect_pt g) ⬝ gluel (f a) :=
!elim_gluel
definition functor_gluer (f : A →* C) (g : B →* D) (b : B) :
ap (f ∧→ g) (gluer b) = ap (λc, smash.mk c (g b)) (respect_pt f) ⬝ gluer (g b) :=
!elim_gluer
definition functor_gluel2 {C D : Type} (f : A → C) (g : B → D) (a : A) :
ap (pmap_of_map f pt ∧→ pmap_of_map g pt) (gluel a) = gluel (f a) :=
begin
refine !elim_gluel ⬝ !idp_con
end
definition functor_gluer2 {C D : Type} (f : A → C) (g : B → D) (b : B) :
ap (pmap_of_map f pt ∧→ pmap_of_map g pt) (gluer b) = gluer (g b) :=
begin
refine !elim_gluer ⬝ !idp_con
end
definition functor_gluel' (f : A →* C) (g : B →* D) (a a' : A) :
ap (f ∧→ g) (gluel' a a') = ap (smash.mk (f a)) (respect_pt g) ⬝
gluel' (f a) (f a') ⬝ (ap (smash.mk (f a')) (respect_pt g))⁻¹ :=
begin
refine !elim_gluel' ⬝ _,
refine whisker_left _ !con_inv ⬝ _,
refine !con.assoc⁻¹ ⬝ _, apply whisker_right,
apply con.assoc
end
definition functor_gluer' (f : A →* C) (g : B →* D) (b b' : B) :
ap (f ∧→ g) (gluer' b b') = ap (λc, smash.mk c (g b)) (respect_pt f) ⬝
gluer' (g b) (g b') ⬝ (ap (λc, smash.mk c (g b')) (respect_pt f))⁻¹ :=
begin
refine !elim_gluer' ⬝ _,
refine whisker_left _ !con_inv ⬝ _,
refine !con.assoc⁻¹ ⬝ _, apply whisker_right,
apply con.assoc
end
/- the statements of the above rules becomes easier if one of the functions respects the basepoint
by reflexivity -/
-- definition functor_gluel'2 {D : Type} (f : A →* C) (g : B → D) (a a' : A) :
-- ap (f ∧→ (pmap_of_map g pt)) (gluel' a a') = gluel' (f a) (f a') :=
-- begin
-- refine !ap_con ⬝ whisker_left _ !ap_inv ⬝ _,
-- refine (!functor_gluel ⬝ !idp_con) ◾ (!functor_gluel ⬝ !idp_con)⁻²
-- end
-- definition functor_gluer'2 {C : Type} (f : A → C) (g : B →* D) (b b' : B) :
-- ap (pmap_of_map f pt ∧→ g) (gluer' b b') = gluer' (g b) (g b') :=
-- begin
-- refine !ap_con ⬝ whisker_left _ !ap_inv ⬝ _,
-- refine (!functor_gluer ⬝ !idp_con) ◾ (!functor_gluer ⬝ !idp_con)⁻²
-- end
definition functor_gluel'2 {C D : Type} (f : A → C) (g : B → D) (a a' : A) :
ap (pmap_of_map f pt ∧→ pmap_of_map g pt) (gluel' a a') = gluel' (f a) (f a') :=
!ap_con ⬝ whisker_left _ !ap_inv ⬝ !functor_gluel2 ◾ !functor_gluel2⁻²
definition functor_gluer'2 {C D : Type} (f : A → C) (g : B → D) (b b' : B) :
ap (pmap_of_map f pt ∧→ pmap_of_map g pt) (gluer' b b') = gluer' (g b) (g b') :=
!ap_con ⬝ whisker_left _ !ap_inv ⬝ !functor_gluer2 ◾ !functor_gluer2⁻²
lemma functor_gluel'2_same {C D : Type} (f : A → C) (g : B → D) (a : A) :
functor_gluel'2 f (pmap_of_map g pt) a a =
ap02 (pmap_of_map f pt ∧→ pmap_of_map g pt) (con.right_inv (gluel a)) ⬝
(con.right_inv (gluel (f a)))⁻¹ :=
begin
refine _ ⬝ whisker_right _ (eq_top_of_square (!ap_con_right_inv_sq))⁻¹,
refine _ ⬝ whisker_right _ !con_idp⁻¹,
refine _ ⬝ !con.assoc⁻¹,
apply whisker_left,
apply eq_con_inv_of_con_eq, symmetry,
apply con_right_inv_natural
end
lemma functor_gluer'2_same {C D : Type} (f : A → C) (g : B → D) (b : B) :
functor_gluer'2 (pmap_of_map f pt) g b b =
ap02 (pmap_of_map f pt ∧→ pmap_of_map g pt) (con.right_inv (gluer b)) ⬝
(con.right_inv (gluer (g b)))⁻¹ :=
begin
refine _ ⬝ whisker_right _ (eq_top_of_square (!ap_con_right_inv_sq))⁻¹,
refine _ ⬝ whisker_right _ !con_idp⁻¹,
refine _ ⬝ !con.assoc⁻¹,
apply whisker_left,
apply eq_con_inv_of_con_eq, symmetry,
apply con_right_inv_natural
end
definition smash_functor_pid [constructor] (A B : Type*) :
pid A ∧→ pid B ~* pid (A ∧ B) :=
begin
fapply phomotopy.mk,
{ intro x, induction x with a b a b,
{ reflexivity },
{ reflexivity },
{ reflexivity },
{ apply eq_pathover_id_right, apply hdeg_square, exact !functor_gluel ⬝ !idp_con },
{ apply eq_pathover_id_right, apply hdeg_square, exact !functor_gluer ⬝ !idp_con }},
{ reflexivity }
end
/- the functorial action of the smash product respects pointed homotopies, and some computation
rules for this pointed homotopy -/
definition smash_functor_phomotopy {f f' : A →* C} {g g' : B →* D}
(h₁ : f ~* f') (h₂ : g ~* g') : f ∧→ g ~* f' ∧→ g' :=
begin
induction h₁ using phomotopy_rec_on_idp,
induction h₂ using phomotopy_rec_on_idp,
reflexivity
end
/- a more explicit proof, if we ever need it -/
-- definition smash_functor_homotopy [unfold 11] {f f' : A →* C} {g g' : B →* D}
-- (h₁ : f ~* f') (h₂ : g ~* g') : f ∧→ g ~ f' ∧→ g' :=
-- begin
-- intro x, induction x with a b a b,
-- { exact ap011 smash.mk (h₁ a) (h₂ b) },
-- { reflexivity },
-- { reflexivity },
-- { apply eq_pathover,
-- refine !functor_gluel ⬝ph _ ⬝hp !functor_gluel⁻¹,
-- refine _ ⬝v square_of_eq_top (ap_mk_left (h₁ a)),
-- exact ap011_ap_square_right smash.mk (h₁ a) (to_homotopy_pt h₂) },
-- { apply eq_pathover,
-- refine !functor_gluer ⬝ph _ ⬝hp !functor_gluer⁻¹,
-- refine _ ⬝v square_of_eq_top (ap_mk_right (h₂ b)),
-- exact ap011_ap_square_left smash.mk (h₂ b) (to_homotopy_pt h₁) },
-- end
-- definition smash_functor_phomotopy [constructor] {f f' : A →* C} {g g' : B →* D}
-- (h₁ : f ~* f') (h₂ : g ~* g') : f ∧→ g ~* f' ∧→ g' :=
-- begin
-- apply phomotopy.mk (smash_functor_homotopy h₁ h₂),
-- induction h₁ with h₁ h₁₀, induction h₂ with h₂ h₂₀,
-- induction f with f f₀, induction g with g g₀,
-- induction f' with f' f'₀, induction g' with g' g'₀,
-- induction C with C c₀, induction D with D d₀, esimp at *,
-- induction h₁₀, induction h₂₀, induction f'₀, induction g'₀,
-- exact !ap_ap011⁻¹
-- end
definition smash_functor_phomotopy_refl (f : A →* C) (g : B →* D) :
smash_functor_phomotopy (phomotopy.refl f) (phomotopy.refl g) = phomotopy.rfl :=
!phomotopy_rec_on_idp_refl ⬝ !phomotopy_rec_on_idp_refl
definition smash_functor_phomotopy_symm {f₁ f₂ : A →* C} {g₁ g₂ : B →* D}
(h : f₁ ~* f₂) (k : g₁ ~* g₂) :
smash_functor_phomotopy h⁻¹* k⁻¹* = (smash_functor_phomotopy h k)⁻¹* :=
begin
induction h using phomotopy_rec_on_idp, induction k using phomotopy_rec_on_idp,
exact ap011 smash_functor_phomotopy !refl_symm !refl_symm ⬝ !smash_functor_phomotopy_refl ⬝
!refl_symm⁻¹ ⬝ !smash_functor_phomotopy_refl⁻¹⁻²**
end
definition smash_functor_phomotopy_trans {f₁ f₂ f₃ : A →* C} {g₁ g₂ g₃ : B →* D}
(h₁ : f₁ ~* f₂) (h₂ : f₂ ~* f₃) (k₁ : g₁ ~* g₂) (k₂ : g₂ ~* g₃) :
smash_functor_phomotopy (h₁ ⬝* h₂) (k₁ ⬝* k₂) =
smash_functor_phomotopy h₁ k₁ ⬝* smash_functor_phomotopy h₂ k₂ :=
begin
induction h₁ using phomotopy_rec_on_idp, induction h₂ using phomotopy_rec_on_idp,
induction k₁ using phomotopy_rec_on_idp, induction k₂ using phomotopy_rec_on_idp,
refine ap011 smash_functor_phomotopy !trans_refl !trans_refl ⬝ !trans_refl⁻¹ ⬝ idp ◾** _,
exact !smash_functor_phomotopy_refl⁻¹
end
definition smash_functor_phomotopy_trans_right {f₁ f₂ : A →* C} {g₁ g₂ g₃ : B →* D}
(h₁ : f₁ ~* f₂) (k₁ : g₁ ~* g₂) (k₂ : g₂ ~* g₃) :
smash_functor_phomotopy h₁ (k₁ ⬝* k₂) =
smash_functor_phomotopy h₁ k₁ ⬝* smash_functor_phomotopy phomotopy.rfl k₂ :=
begin
refine ap (λx, smash_functor_phomotopy x _) !trans_refl⁻¹ ⬝ !smash_functor_phomotopy_trans,
end
definition smash_functor_phomotopy_phsquare {f₁ f₂ f₃ f₄ : A →* C} {g₁ g₂ g₃ g₄ : B →* D}
{h₁ : f₁ ~* f₂} {h₂ : f₃ ~* f₄} {h₃ : f₁ ~* f₃} {h₄ : f₂ ~* f₄}
{k₁ : g₁ ~* g₂} {k₂ : g₃ ~* g₄} {k₃ : g₁ ~* g₃} {k₄ : g₂ ~* g₄}
(p : phsquare h₁ h₂ h₃ h₄) (q : phsquare k₁ k₂ k₃ k₄) :
phsquare (smash_functor_phomotopy h₁ k₁)
(smash_functor_phomotopy h₂ k₂)
(smash_functor_phomotopy h₃ k₃)
(smash_functor_phomotopy h₄ k₄) :=
!smash_functor_phomotopy_trans⁻¹ ⬝ ap011 smash_functor_phomotopy p q ⬝
!smash_functor_phomotopy_trans
definition smash_functor_eq_of_phomotopy (f : A →* C) {g g' : B →* D}
(p : g ~* g') : ap (smash_functor f) (eq_of_phomotopy p) =
eq_of_phomotopy (smash_functor_phomotopy phomotopy.rfl p) :=
begin
induction p using phomotopy_rec_on_idp,
refine ap02 _ !eq_of_phomotopy_refl ⬝ _,
refine !eq_of_phomotopy_refl⁻¹ ⬝ _,
apply ap eq_of_phomotopy,
exact !smash_functor_phomotopy_refl⁻¹
end
/- the functorial action preserves compositions, the interchange law -/
definition smash_functor_pcompose_homotopy [unfold 11] {C D E F : Type}
(f' : C → E) (f : A → C) (g' : D → F) (g : B → D) :
(pmap_of_map f' (f pt) ∘* pmap_of_map f pt) ∧→ (pmap_of_map g' (g pt) ∘* pmap_of_map g pt) ~
(pmap_of_map f' (f pt) ∧→ pmap_of_map g' (g pt)) ∘* (pmap_of_map f pt ∧→ pmap_of_map g pt) :=
begin
intro x, induction x with a b a b,
{ reflexivity },
{ reflexivity },
{ reflexivity },
{ apply eq_pathover, refine !functor_gluel2 ⬝ph _, esimp,
refine _ ⬝hp (ap_compose (_ ∧→ _) _ _)⁻¹,
refine _ ⬝hp ap02 _ !functor_gluel2⁻¹, refine _ ⬝hp !functor_gluel2⁻¹, exact hrfl },
{ apply eq_pathover, refine !functor_gluer2 ⬝ph _, esimp,
refine _ ⬝hp (ap_compose (_ ∧→ _) _ _)⁻¹,
refine _ ⬝hp ap02 _ !functor_gluer2⁻¹, refine _ ⬝hp !functor_gluer2⁻¹, exact hrfl }
end
definition smash_functor_pcompose (f' : C →* E) (f : A →* C) (g' : D →* F) (g : B →* D) :
(f' ∘* f) ∧→ (g' ∘* g) ~* f' ∧→ g' ∘* f ∧→ g :=
begin
induction C with C, induction D with D, induction E with E, induction F with F,
induction f with f f₀, induction f' with f' f'₀, induction g with g g₀,
induction g' with g' g'₀, esimp at *,
induction f₀, induction f'₀, induction g₀, induction g'₀,
fapply phomotopy.mk,
{ rexact smash_functor_pcompose_homotopy f' f g' g },
{ reflexivity }
end
definition smash_functor_split (f : A →* C) (g : B →* D) :
f ∧→ g ~* (pid C) ∧→ g ∘* f ∧→ (pid B) :=
smash_functor_phomotopy !pid_pcompose⁻¹* !pcompose_pid⁻¹* ⬝* !smash_functor_pcompose
/- An alternative proof which doesn't start by applying inductions, so which is more explicit -/
-- definition smash_functor_pcompose_homotopy [unfold 11] (f' : C →* E) (f : A →* C) (g' : D →* F)
-- (g : B →* D) : (f' ∘* f) ∧→ (g' ∘* g) ~ (f' ∧→ g') ∘* (f ∧→ g) :=
-- begin
-- intro x, induction x with a b a b,
-- { reflexivity },
-- { reflexivity },
-- { reflexivity },
-- { apply eq_pathover, exact abstract begin apply hdeg_square,
-- refine !functor_gluel ⬝ _ ⬝ (ap_compose (f' ∧→ g') _ _)⁻¹,
-- refine whisker_right _ !ap_con ⬝ !con.assoc ⬝ _ ⬝ ap02 _ !functor_gluel⁻¹,
-- refine (!ap_compose'⁻¹ ⬝ !ap_compose') ◾ proof !functor_gluel⁻¹ qed ⬝ !ap_con⁻¹ end end },
-- { apply eq_pathover, exact abstract begin apply hdeg_square,
-- refine !functor_gluer ⬝ _ ⬝ (ap_compose (f' ∧→ g') _ _)⁻¹,
-- refine whisker_right _ !ap_con ⬝ !con.assoc ⬝ _ ⬝ ap02 _ !functor_gluer⁻¹,
-- refine (!ap_compose'⁻¹ ⬝ !ap_compose') ◾ proof !functor_gluer⁻¹ qed ⬝ !ap_con⁻¹ end end }
-- end
-- definition smash_functor_pcompose [constructor] (f' : C →* E) (f : A →* C) (g' : D →* F) (g : B →* D) :
-- (f' ∘* f) ∧→ (g' ∘* g) ~* f' ∧→ g' ∘* f ∧→ g :=
-- begin
-- fapply phomotopy.mk,
-- { exact smash_functor_pcompose_homotopy f' f g' g },
-- { exact abstract begin induction C, induction D, induction E, induction F,
-- induction f with f f₀, induction f' with f' f'₀, induction g with g g₀,
-- induction g' with g' g'₀, esimp at *,
-- induction f₀, induction f'₀, induction g₀, induction g'₀, reflexivity end end }
-- end
definition smash_functor_pid_pcompose [constructor] (A : Type*) (g' : C →* D) (g : B →* C)
: pid A ∧→ (g' ∘* g) ~* pid A ∧→ g' ∘* pid A ∧→ g :=
smash_functor_phomotopy !pid_pcompose⁻¹* phomotopy.rfl ⬝* !smash_functor_pcompose
definition smash_functor_pcompose_pid [constructor] (B : Type*) (f' : C →* D) (f : A →* C)
: (f' ∘* f) ∧→ pid B ~* f' ∧→ (pid B) ∘* f ∧→ (pid B) :=
smash_functor_phomotopy phomotopy.rfl !pid_pcompose⁻¹* ⬝* !smash_functor_pcompose
/- composing commutes with applying homotopies -/
definition smash_functor_pcompose_phomotopy {f₂ f₂' : C →* E} {f f' : A →* C} {g₂ g₂' : D →* F}
{g g' : B →* D} (h₂ : f₂ ~* f₂') (h₁ : f ~* f') (k₂ : g₂ ~* g₂') (k₁ : g ~* g') :
phsquare (smash_functor_pcompose f₂ f g₂ g)
(smash_functor_pcompose f₂' f' g₂' g')
(smash_functor_phomotopy (h₂ ◾* h₁) (k₂ ◾* k₁))
(smash_functor_phomotopy h₂ k₂ ◾* smash_functor_phomotopy h₁ k₁) :=
begin
induction h₁ using phomotopy_rec_on_idp, induction h₂ using phomotopy_rec_on_idp,
induction k₁ using phomotopy_rec_on_idp, induction k₂ using phomotopy_rec_on_idp,
refine (ap011 smash_functor_phomotopy !pcompose2_refl !pcompose2_refl ⬝
!smash_functor_phomotopy_refl) ⬝ph** phvrfl ⬝hp**
(ap011 pcompose2 !smash_functor_phomotopy_refl !smash_functor_phomotopy_refl ⬝
!pcompose2_refl)⁻¹,
end
definition smash_functor_pid_pcompose_phomotopy_right (g₂ : D →* E) {g g' : B →* D}
(k : g ~* g') :
phsquare (smash_functor_pid_pcompose A g₂ g)
(smash_functor_pid_pcompose A g₂ g')
(smash_functor_phomotopy phomotopy.rfl (pwhisker_left g₂ k))
(pwhisker_left (pid A ∧→ g₂) (smash_functor_phomotopy phomotopy.rfl k)) :=
begin
refine smash_functor_phomotopy_phsquare _ _ ⬝h** !smash_functor_pcompose_phomotopy ⬝hp**
((ap (pwhisker_right _) !smash_functor_phomotopy_refl) ◾** idp ⬝ !pcompose2_refl_left),
exact (!pcompose2_refl ⬝ph** phvrfl)⁻¹ʰ**,
exact (phhrfl ⬝hp** !pcompose2_refl_left⁻¹)
end
section
variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type*} {B₀₀ B₂₀ B₀₂ B₂₂ : Type*}
{f₁₀ : A₀₀ →* A₂₀} {f₀₁ : A₀₀ →* A₀₂} {f₂₁ : A₂₀ →* A₂₂} {f₁₂ : A₀₂ →* A₂₂}
{g₁₀ : B₀₀ →* B₂₀} {g₀₁ : B₀₀ →* B₀₂} {g₂₁ : B₂₀ →* B₂₂} {g₁₂ : B₀₂ →* B₂₂}
/- applying the functorial action of smash to squares of pointed maps -/
definition smash_functor_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : psquare g₁₀ g₁₂ g₀₁ g₂₁) :
psquare (f₁₀ ∧→ g₁₀) (f₁₂ ∧→ g₁₂) (f₀₁ ∧→ g₀₁) (f₂₁ ∧→ g₂₁) :=
!smash_functor_pcompose⁻¹* ⬝* smash_functor_phomotopy p q ⬝* !smash_functor_pcompose
end
/- f ∧ g is constant if g is constant -/
definition smash_functor_pconst_right_homotopy [unfold 6] {C : Type} (f : A → C) (x : A ∧ B) :
(pmap_of_map f pt ∧→ pconst B D) x = pt :=
begin
induction x with a b a b,
{ exact gluel' (f a) pt },
{ exact (gluel pt)⁻¹ },
{ exact (gluer pt)⁻¹ },
{ apply eq_pathover, note x := functor_gluel2 f (λx : B, Point D) a, esimp [pconst] at *,
refine x ⬝ph _, refine _ ⬝hp !ap_constant⁻¹, apply square_of_eq, reflexivity },
{ apply eq_pathover, note x := functor_gluer2 f (λx : B, Point D) b, esimp [pconst] at *,
refine x ⬝ph _, refine _ ⬝hp !ap_constant⁻¹, apply square_of_eq,
rexact con.right_inv (gluel (f pt)) ⬝ (con.right_inv (gluer pt))⁻¹ }
end
definition smash_functor_pconst_right (f : A →* C) :
f ∧→ (pconst B D) ~* pconst (A ∧ B) (C ∧ D) :=
begin
induction C with C, induction f with f f₀, esimp at *, induction f₀,
fapply phomotopy.mk,
{ exact smash_functor_pconst_right_homotopy f },
{ rexact con.right_inv (gluel (f pt)) }
end
definition smash_functor_pconst_right_phomotopy {f f' : A →* C} (p : f ~* f') :
smash_functor_phomotopy p (phomotopy.refl (pconst B D)) ⬝* smash_functor_pconst_right f' =
smash_functor_pconst_right f :=
begin
induction p using phomotopy_rec_on_idp,
exact !smash_functor_phomotopy_refl ◾** idp ⬝ !refl_trans
end
/- This makes smash_functor into a pointed map (B →* B') →* (A ∧ B →* A ∧ B') -/
definition smash_functor_right [constructor] (A B C : Type*) :
ppmap B C →* ppmap (A ∧ B) (A ∧ C) :=
pmap.mk (smash_functor (pid A)) (eq_of_phomotopy (smash_functor_pconst_right (pid A)))
/- We want to show that smash_functor_right is natural in A, B and C.
For this we need two coherence rules. Given the function h := (f' ∘ f) ∧→ (g' ∘ g) and suppose
that either g' or g is constant. There are two ways to show that h is constant: either by using
exchange, or directly. We need to show that these two proofs result in the same pointed
homotopy. First we do the case where g is constant -/
private definition my_squarel {A : Type} {a₁ a₂ a₃ : A} (p₁ : a₁ = a₃) (p₂ : a₂ = a₃) :
square (p₁ ⬝ p₂⁻¹) p₂⁻¹ p₁ idp :=
proof square_of_eq idp qed
private definition my_squarer {A : Type} {a₁ a₂ a₃ : A} (p₁ : a₁ = a₃) (p₂ : a₁ = a₂) :
square (p₁ ⬝ p₁⁻¹) p₂⁻¹ p₂ idp :=
proof square_of_eq (con.right_inv p₁ ⬝ (con.right_inv p₂)⁻¹) qed
private definition my_cube_fillerl {A B C : Type} {g : B → C} {f : A → B} {a₁ a₂ : A} {b₀ : B}
{p : f ~ λa, b₀} {q : Πa, g (f a) = g b₀} (r : (λa, ap g (p a)) ~ q) :
cube (hrfl ⬝hp (r a₁)⁻¹) hrfl
(my_squarel (q a₁) (q a₂)) (aps g (my_squarel (p a₁) (p a₂)))
(hrfl ⬝hp (!ap_con ⬝ whisker_left _ !ap_inv ⬝ (r a₁) ◾ (r a₂)⁻²)⁻¹)
(hrfl ⬝hp (r a₂)⁻²⁻¹ ⬝hp !ap_inv⁻¹) :=
begin
induction r using homotopy.rec_on_idp, induction p using homotopy.rec_on_idp_left, exact idc
end
private definition my_cube_fillerr {B C : Type} {g : B → C} {b₀ bl br : B}
{pl : b₀ = bl} {pr : b₀ = br} {ql : g b₀ = g bl} {qr : g b₀ = g br}
(sl : ap g pl = ql) (sr : ap g pr = qr) :
cube (hrfl ⬝hp sr⁻¹) hrfl
(my_squarer ql qr) (aps g (my_squarer pl pr))
(hrfl ⬝hp (!ap_con ⬝ whisker_left _ !ap_inv ⬝ sl ◾ sl⁻²)⁻¹)
(hrfl ⬝hp sr⁻²⁻¹ ⬝hp !ap_inv⁻¹) :=
begin
induction sr, induction sl, induction pr, induction pl, exact idc
end
definition smash_functor_pcompose_pconst_homotopy {A B C D E F : Type}
(a₀ : A) (b₀ : B) (d₀ : D) (f' : C → E) (f : A → C) (g : D → F)
(x : pointed.MK A a₀ ∧ pointed.MK B b₀) :
square (smash_functor_pcompose_homotopy f' f g (λ a, d₀) x)
idp
(smash_functor_pconst_right_homotopy (λ a, f' (f a)) x)
(ap (smash_functor' (pmap.mk f' (refl (f' (f a₀)))) (pmap.mk g (refl (g d₀))))
(smash_functor_pconst_right_homotopy f x)) :=
begin
induction x with a b a b,
{ refine _ ⬝hp (functor_gluel'2 f' g (f a) (f a₀))⁻¹, exact hrfl },
{ refine _ ⬝hp !ap_inv⁻¹, refine _ ⬝hp !functor_gluel2⁻²⁻¹, exact hrfl },
{ refine _ ⬝hp !ap_inv⁻¹, refine _ ⬝hp !functor_gluer2⁻²⁻¹, exact hrfl },
{ exact abstract begin apply square_pathover,
refine !rec_eq_gluel ⬝p1 _ ⬝1p !natural_square_refl⁻¹,
refine !rec_eq_gluel ⬝p2 _ ⬝2p !natural_square_ap_fn⁻¹,
apply whisker001, apply whisker021,
apply move201, refine _ ⬝1p !eq_hconcat_hdeg_square⁻¹,
apply move221, refine _ ⬝1p !hdeg_square_hconcat_eq⁻¹,
refine ap (hconcat_eq _) !ap_inv ⬝p1 _ ⬝2p (ap (aps _) !rec_eq_gluel ⬝ !aps_eq_hconcat)⁻¹,
apply whisker021, refine _ ⬝2p !aps_hconcat_eq⁻¹, apply move221,
refine _ ⬝1p !hdeg_square_hconcat_eq⁻¹,
refine _ ⬝1p ap hdeg_square (eq_bot_of_square (transpose !ap02_ap_constant)),
apply my_cube_fillerl end end },
{ exact abstract begin apply square_pathover,
refine !rec_eq_gluer ⬝p1 _ ⬝1p !natural_square_refl⁻¹,
refine !rec_eq_gluer ⬝p2 _ ⬝2p !natural_square_ap_fn⁻¹,
apply whisker001, apply whisker021,
apply move201, refine _ ⬝1p !eq_hconcat_hdeg_square⁻¹,
apply move221, refine _ ⬝1p !hdeg_square_hconcat_eq⁻¹,
refine ap (hconcat_eq _) !ap_inv ⬝p1 _ ⬝2p (ap (aps _) !rec_eq_gluer ⬝ !aps_eq_hconcat)⁻¹,
apply whisker021, refine _ ⬝2p !aps_hconcat_eq⁻¹, apply move221,
refine _ ⬝1p !hdeg_square_hconcat_eq⁻¹,
refine _ ⬝1p ap hdeg_square (eq_bot_of_square (transpose !ap02_ap_constant)),
apply my_cube_fillerr end end }
end
definition smash_functor_pcompose_pconst (f' : C →* E) (f : A →* C) (g : D →* F) :
phsquare (smash_functor_pcompose f' f g (pconst B D))
(smash_functor_pconst_right (f' ∘* f))
(smash_functor_phomotopy phomotopy.rfl (pcompose_pconst g))
(pwhisker_left (f' ∧→ g) (smash_functor_pconst_right f) ⬝*
pcompose_pconst (f' ∧→ g)) :=
begin
induction A with A a₀, induction B with B b₀,
induction E with E e₀, induction C with C c₀, induction F with F x₀, induction D with D d₀,
induction f' with f' f'₀, induction f with f f₀, induction g with g g₀,
esimp at *, induction f'₀, induction f₀, induction g₀,
refine !smash_functor_phomotopy_refl ⬝ph** _, refine _ ⬝ !refl_trans⁻¹,
fapply phomotopy_eq,
{ intro x, refine eq_of_square _ ⬝ !con_idp,
exact smash_functor_pcompose_pconst_homotopy a₀ b₀ d₀ f' f g x, },
{ refine _ ⬝ !idp_con⁻¹,
refine whisker_right _ (!whisker_right_idp ⬝ !eq_of_square_hrfl_hconcat_eq) ⬝ _,
refine !con.assoc ⬝ _, apply con_eq_of_eq_inv_con, esimp,
refine whisker_right _ !functor_gluel'2_same ⬝ _,
refine !inv_con_cancel_right ⬝ _,
refine _ ⬝ idp ◾ ap (whisker_left _) (!idp_con ⬝ !idp_con ⬝ !whisker_right_idp ⬝ !idp_con)⁻¹,
symmetry, apply whisker_left_idp }
end
/- a version where the left maps are identities -/
definition smash_functor_pid_pcompose_pconst (g : D →* F) :
phsquare (smash_functor_pid_pcompose A g (pconst B D))
(smash_functor_pconst_right (pid A))
(smash_functor_phomotopy phomotopy.rfl (pcompose_pconst g))
(pwhisker_left (pid A ∧→ g) (smash_functor_pconst_right (pid A)) ⬝*
pcompose_pconst (pid A ∧→ g)) :=
(!smash_functor_phomotopy_refl ◾** idp ⬝ !refl_trans) ⬝pv**
smash_functor_pcompose_pconst (pid A) (pid A) g
/- a small rewrite of the previous -/
definition smash_functor_pid_pcompose_pconst' (g : D →* F) :
pwhisker_left (pid A ∧→ g) (smash_functor_pconst_right (pid A)) ⬝*
pcompose_pconst (pid A ∧→ g) =
(smash_functor_pid_pcompose A g (pconst B D))⁻¹* ⬝*
(smash_functor_phomotopy phomotopy.rfl (pcompose_pconst g) ⬝*
smash_functor_pconst_right (pid A)) :=
begin
apply eq_symm_trans_of_trans_eq,
exact smash_functor_pid_pcompose_pconst g
end
/- if g' is constant -/
definition smash_functor_pconst_pcompose_homotopy [unfold 13] {A B C D E F : Type}
(a₀ : A) (b₀ : B) (x₀ : F) (f' : C → E) (f : A → C) (g : B → D)
(x : pointed.MK A a₀ ∧ pointed.MK B b₀) :
square (smash_functor_pcompose_homotopy f' f (λ a, x₀) g x)
idp
(smash_functor_pconst_right_homotopy (λ a, f' (f a)) x)
(smash_functor_pconst_right_homotopy f'
(smash_functor (pmap_of_map f a₀) (pmap_of_map g b₀) x)) :=
begin
induction x with a b a b,
{ exact hrfl },
{ exact hrfl },
{ exact hrfl },
{ exact abstract begin apply square_pathover,
refine !rec_eq_gluel ⬝p1 _ ⬝1p !natural_square_refl⁻¹,
refine !rec_eq_gluel ⬝p2 _ ⬝2p
(natural_square_compose (smash_functor_pconst_right_homotopy f') _ _)⁻¹ᵖ,
apply whisker001, apply whisker021,
apply move201, refine _ ⬝1p !eq_hconcat_hdeg_square⁻¹,
apply move221, refine _ ⬝1p !hdeg_square_hconcat_eq⁻¹,
refine ap (hconcat_eq _) !ap_inv ⬝p1 _ ⬝2p (natural_square_eq2 _ !functor_gluel2)⁻¹ᵖ,
apply whisker021,
refine _ ⬝1p ap hdeg_square (eq_of_square (!ap_constant_compose⁻¹ʰ) ⬝ !idp_con)⁻¹,
apply move221, refine _ ⬝1p !hdeg_square_hconcat_eq⁻¹,
refine _ ⬝2p !rec_eq_gluel⁻¹, apply whisker021,
apply move221, refine _ ⬝1p !hdeg_square_hconcat_eq⁻¹,
refine _ ⬝1p ap hdeg_square (eq_bot_of_square (transpose !ap02_constant)),
exact rfl2 end end },
{ exact abstract begin apply square_pathover,
refine !rec_eq_gluer ⬝p1 _ ⬝1p !natural_square_refl⁻¹,
refine !rec_eq_gluer ⬝p2 _ ⬝2p
(natural_square_compose (smash_functor_pconst_right_homotopy f') _ _)⁻¹ᵖ,
apply whisker001, apply whisker021,
apply move201, refine _ ⬝1p !eq_hconcat_hdeg_square⁻¹,
apply move221, refine _ ⬝1p !hdeg_square_hconcat_eq⁻¹,
refine ap (hconcat_eq _) !ap_inv ⬝p1 _ ⬝2p (natural_square_eq2 _ !functor_gluer2)⁻¹ᵖ,
apply whisker021,
refine _ ⬝1p ap hdeg_square (eq_of_square (!ap_constant_compose⁻¹ʰ) ⬝ !idp_con)⁻¹,
apply move221, refine _ ⬝1p !hdeg_square_hconcat_eq⁻¹,
refine _ ⬝2p !rec_eq_gluer⁻¹, apply whisker021,
apply move221, refine _ ⬝1p !hdeg_square_hconcat_eq⁻¹,
refine _ ⬝1p ap hdeg_square (eq_bot_of_square (transpose !ap02_constant)),
exact rfl2 end end },
end
definition smash_functor_pconst_pcompose (f' : C →* E) (f : A →* C) (g : B →* D) :
phsquare (smash_functor_pcompose f' f (pconst D F) g)
(smash_functor_pconst_right (f' ∘* f))
(smash_functor_phomotopy phomotopy.rfl (pconst_pcompose g))
(pwhisker_right (f ∧→ g) (smash_functor_pconst_right f') ⬝*
pconst_pcompose (f ∧→ g)) :=
begin
induction A with A a₀, induction B with B b₀,
induction E with E e₀, induction C with C c₀, induction F with F x₀, induction D with D d₀,
induction f' with f' f'₀, induction f with f f₀, induction g with g g₀,
esimp at *, induction f'₀, induction f₀, induction g₀,
refine !smash_functor_phomotopy_refl ⬝ph** _, refine _ ⬝ !refl_trans⁻¹,
fapply phomotopy_eq,
{ intro x, refine eq_of_square (smash_functor_pconst_pcompose_homotopy a₀ b₀ x₀ f' f g x) },
{ refine whisker_right _ (!whisker_right_idp ⬝ !eq_of_square_hrfl) ⬝ _,
have H : Π{A : Type} {a a' : A} (p : a = a'),
idp_con (p ⬝ p⁻¹) ⬝ con.right_inv p = idp ⬝
whisker_left idp (idp ⬝ (idp ⬝ proof whisker_right idp (idp_con (p ⬝ p⁻¹ᵖ))⁻¹ᵖ qed ⬝
whisker_left idp (con.right_inv p))), by intros; induction p; reflexivity,
rexact H (gluel (f' (f a₀))) }
end
/- a version where the left maps are identities -/
definition smash_functor_pid_pconst_pcompose (g : B →* D) :
phsquare (smash_functor_pid_pcompose A (pconst D F) g)
(smash_functor_pconst_right (pid A))
(smash_functor_phomotopy phomotopy.rfl (pconst_pcompose g))
(pwhisker_right (pid A ∧→ g) (smash_functor_pconst_right (pid A)) ⬝*
pconst_pcompose (pid A ∧→ g)) :=
(!smash_functor_phomotopy_refl ◾** idp ⬝ !refl_trans) ⬝pv**
smash_functor_pconst_pcompose (pid A) (pid A) g
/- these lemmas are use to show that smash_functor_right is natural in all arguments -/
definition smash_functor_right_natural_right (f : C →* C') :
psquare (smash_functor_right A B C) (smash_functor_right A B C')
(ppcompose_left f) (ppcompose_left (pid A ∧→ f)) :=
begin
refine _⁻¹*,
fapply phomotopy_mk_ppmap,
{ exact smash_functor_pid_pcompose A f },
{ refine idp ◾** (!phomotopy_of_eq_con ⬝ (ap phomotopy_of_eq !pcompose_left_eq_of_phomotopy ⬝
!phomotopy_of_eq_of_phomotopy) ◾** !phomotopy_of_eq_of_phomotopy) ⬝ _ ,
refine _ ⬝ (!phomotopy_of_eq_con ⬝ (ap phomotopy_of_eq !smash_functor_eq_of_phomotopy ⬝
!phomotopy_of_eq_of_phomotopy) ◾** !phomotopy_of_eq_of_phomotopy)⁻¹,
apply smash_functor_pid_pcompose_pconst }
end
definition smash_functor_right_natural_middle (f : B' →* B) :
psquare (smash_functor_right A B C) (smash_functor_right A B' C)
(ppcompose_right f) (ppcompose_right (pid A ∧→ f)) :=
begin
refine _⁻¹*,
fapply phomotopy_mk_ppmap,
{ intro g, exact smash_functor_pid_pcompose A g f },
{ refine idp ◾** (!phomotopy_of_eq_con ⬝ (ap phomotopy_of_eq !pcompose_right_eq_of_phomotopy ⬝
!phomotopy_of_eq_of_phomotopy) ◾** !phomotopy_of_eq_of_phomotopy) ⬝ _ ,
refine _ ⬝ (!phomotopy_of_eq_con ⬝ (ap phomotopy_of_eq !smash_functor_eq_of_phomotopy ⬝
!phomotopy_of_eq_of_phomotopy) ◾** !phomotopy_of_eq_of_phomotopy)⁻¹,
apply smash_functor_pid_pconst_pcompose }
end
definition smash_functor_right_natural_left (f : A →* A') :
psquare (smash_functor_right A B C) (ppcompose_right (f ∧→ (pid B)))
(smash_functor_right A' B C) (ppcompose_left (f ∧→ (pid C))) :=
begin
refine _⁻¹*,
fapply phomotopy_mk_ppmap,
{ intro g, exact smash_functor_psquare proof phomotopy.rfl qed proof phomotopy.rfl qed },
{ esimp,
refine idp ◾** (!phomotopy_of_eq_con ⬝ (ap phomotopy_of_eq !pcompose_left_eq_of_phomotopy ⬝
!phomotopy_of_eq_of_phomotopy) ◾** !phomotopy_of_eq_of_phomotopy) ⬝ _ ,
refine _ ⬝ (!phomotopy_of_eq_con ⬝ (ap phomotopy_of_eq !pcompose_right_eq_of_phomotopy ⬝
!phomotopy_of_eq_of_phomotopy) ◾** !phomotopy_of_eq_of_phomotopy)⁻¹,
apply eq_of_phsquare,
refine (phmove_bot_of_left _ !smash_functor_pconst_pcompose⁻¹ʰ**) ⬝h**
(!smash_functor_phomotopy_refl ⬝pv** !phhrfl) ⬝h** !smash_functor_pcompose_pconst ⬝vp** _,
refine !trans_assoc ⬝ !trans_assoc ⬝ idp ◾** _ ⬝ !trans_refl,
refine idp ◾** !refl_trans ⬝ !trans_left_inv }
end
/- f ∧ g is a pointed equivalence if f and g are -/
definition smash_functor_using_pushout [unfold 7] (f : A →* C) (g : B →* D) : A ∧ B → C ∧ D :=
begin
fapply pushout.functor (sum_functor f g) (prod_functor f g) id,
{ intro v, induction v with a b,
exact prod_eq idp (respect_pt g),
exact prod_eq (respect_pt f) idp },
{ intro v, induction v with a b: reflexivity }
end
definition smash_functor_homotopy_pushout_functor (f : A →* C) (g : B →* D) :
f ∧→ g ~ smash_functor_using_pushout f g :=
begin
intro x, induction x,
{ reflexivity },
{ reflexivity },
{ reflexivity },
{ apply eq_pathover, refine !elim_gluel ⬝ph _ ⬝hp !pushout.elim_glue⁻¹,
apply hdeg_square, esimp, apply whisker_right, exact !ap_ap011⁻¹ },
{ apply eq_pathover, refine !elim_gluer ⬝ph _ ⬝hp !pushout.elim_glue⁻¹,
apply hdeg_square, esimp, apply whisker_right, exact !ap_ap011⁻¹ }
end
local attribute is_equiv_sum_functor [instance]
definition smash_pequiv [constructor] (f : A ≃* C) (g : B ≃* D) : A ∧ B ≃* C ∧ D :=
begin
fapply pequiv_of_pmap (f ∧→ g),
refine @homotopy_closed _ _ _ _ _ (smash_functor_homotopy_pushout_functor f g)⁻¹ʰᵗʸ,
apply pushout.is_equiv_functor
end
definition smash_pequiv_left [constructor] (B : Type*) (f : A ≃* C) : A ∧ B ≃* C ∧ B :=
smash_pequiv f pequiv.rfl
definition smash_pequiv_right [constructor] (A : Type*) (g : B ≃* D) : A ∧ B ≃* A ∧ D :=
smash_pequiv pequiv.rfl g
/- A ∧ B ≃* pcofiber (pprod_of_pwedge A B) -/
definition prod_of_wedge [unfold 3] (v : pwedge A B) : A × B :=
begin
induction v with a b ,
{ exact (a, pt) },
{ exact (pt, b) },
{ reflexivity }
end
definition wedge_of_sum [unfold 3] (v : A + B) : pwedge A B :=
begin
induction v with a b,
{ exact pushout.inl a },
{ exact pushout.inr b }
end
definition prod_of_wedge_of_sum [unfold 3] (v : A + B) : prod_of_wedge (wedge_of_sum v) = prod_of_sum v :=
begin
induction v with a b,
{ reflexivity },
{ reflexivity }
end
end smash open smash
namespace pushout
definition eq_inl_pushout_wedge_of_sum [unfold 3] (v : pwedge A B) :
inl pt = inl v :> pushout wedge_of_sum bool_of_sum :=
begin
induction v with a b,
{ exact glue (sum.inl pt) ⬝ (glue (sum.inl a))⁻¹, },
{ exact ap inl (glue ⋆) ⬝ glue (sum.inr pt) ⬝ (glue (sum.inr b))⁻¹, },
{ apply eq_pathover_constant_left,
refine !con.right_inv ⬝pv _ ⬝vp !con_inv_cancel_right⁻¹, exact square_of_eq idp }
end
variables (A B)
definition eq_inr_pushout_wedge_of_sum [unfold 3] (b : bool) :
inl pt = inr b :> pushout (@wedge_of_sum A B) bool_of_sum :=
begin
induction b,
{ exact glue (sum.inl pt) },
{ exact ap inl (glue ⋆) ⬝ glue (sum.inr pt) }
end
definition is_contr_pushout_wedge_of_sum : is_contr (pushout (@wedge_of_sum A B) bool_of_sum) :=
begin
apply is_contr.mk (pushout.inl pt),
intro x, induction x with v b w,
{ apply eq_inl_pushout_wedge_of_sum },
{ apply eq_inr_pushout_wedge_of_sum },
{ apply eq_pathover_constant_left_id_right,
induction w with a b,
{ apply whisker_rt, exact vrfl },
{ apply whisker_rt, exact vrfl }}
end
definition bool_of_sum_of_bool {A B : Type*} (b : bool) : bool_of_sum (sum_of_bool A B b) = b :=
by induction b: reflexivity
/- a different proof, using pushout lemmas, and the fact that the wedge is the pushout of
A + B <-- 2 --> 1 -/
definition pushout_wedge_of_sum_equiv_unit : pushout (@wedge_of_sum A B) bool_of_sum ≃ unit :=
begin
refine pushout_hcompose_equiv (sum_of_bool A B) (wedge_equiv_pushout_sum A B ⬝e !pushout.symm)
_ _ ⬝e _,
exact erfl,
intro x, induction x,
reflexivity, reflexivity,
exact bool_of_sum_of_bool,
apply pushout_of_equiv_right
end
end pushout open pushout
namespace smash
variables (A B)
definition smash_equiv_cofiber : smash A B ≃ cofiber (@prod_of_wedge A B) :=
begin
unfold [smash, cofiber, smash'], symmetry,
fapply pushout_vcompose_equiv wedge_of_sum,
{ symmetry, apply equiv_unit_of_is_contr, apply is_contr_pushout_wedge_of_sum },
{ intro x, reflexivity },
{ apply prod_of_wedge_of_sum }
end
definition smash_punit_pequiv [constructor] : smash A punit ≃* punit :=
begin
apply pequiv_punit_of_is_contr,
apply is_contr.mk (smash.mk pt ⋆), intro x,
induction x,
{ induction b, exact gluel' pt a },
{ exact gluel pt },
{ exact gluer pt },
{ apply eq_pathover_constant_left_id_right, apply square_of_eq_top,
exact whisker_right _ !idp_con⁻¹ },
{ apply eq_pathover_constant_left_id_right, induction b,
refine !con.right_inv ⬝pv _, exact square_of_eq idp },
end
definition pprod_of_pwedge [constructor] : pwedge A B →* A ×* B :=
begin
fconstructor,
{ exact prod_of_wedge },
{ reflexivity }
end
definition smash_pequiv_pcofiber [constructor] : smash A B ≃* pcofiber (pprod_of_pwedge A B) :=
begin
apply pequiv_of_equiv (smash_equiv_cofiber A B),
exact cofiber.glue pt
end
variables {A B}
/- commutativity -/
definition smash_flip' [unfold 3] (x : smash A B) : smash B A :=
begin
induction x,
{ exact smash.mk b a },
{ exact auxr },
{ exact auxl },
{ exact gluer a },
{ exact gluel b }
end
definition smash_flip_smash_flip' [unfold 3] (x : smash A B) : smash_flip' (smash_flip' x) = x :=
begin
induction x,
{ reflexivity },
{ reflexivity },
{ reflexivity },
{ apply eq_pathover_id_right,
refine ap_compose' smash_flip' _ _ ⬝ ap02 _ !elim_gluel ⬝ !elim_gluer ⬝ph _,
apply hrfl },
{ apply eq_pathover_id_right,
refine ap_compose' smash_flip' _ _ ⬝ ap02 _ !elim_gluer ⬝ !elim_gluel ⬝ph _,
apply hrfl }
end
variables (A B)
definition smash_flip [constructor] : smash A B →* smash B A :=
pmap.mk smash_flip' idp
definition smash_flip_smash_flip [constructor] :
smash_flip B A ∘* smash_flip A B ~* pid (A ∧ B) :=
phomotopy.mk smash_flip_smash_flip' idp
definition smash_comm [constructor] : smash A B ≃* smash B A :=
begin
apply pequiv.MK2, do 2 apply smash_flip_smash_flip
end
variables {A B}
definition smash_flip_smash_functor' [unfold 7] (f : A →* C) (g : B →* D) : hsquare
smash_flip' smash_flip' (smash_functor' f g) (smash_functor' g f) :=
begin
intro x, induction x,
{ reflexivity },
{ reflexivity },
{ reflexivity },
{ apply eq_pathover,
refine ap_compose' (smash_functor' _ _) _ _ ⬝ ap02 _ !elim_gluel ⬝ !functor_gluer ⬝ph _
⬝hp (ap_compose' smash_flip' _ _ ⬝ ap02 _ !functor_gluel)⁻¹ᵖ,
refine _ ⬝hp (!ap_con ⬝ !ap_compose'⁻¹ ◾ !elim_gluel)⁻¹, exact hrfl },
{ apply eq_pathover,
refine ap_compose' (smash_functor' _ _) _ _ ⬝ ap02 _ !elim_gluer ⬝ !functor_gluel ⬝ph _
⬝hp (ap_compose' smash_flip' _ _ ⬝ ap02 _ !functor_gluer)⁻¹ᵖ,
refine _ ⬝hp (!ap_con ⬝ !ap_compose'⁻¹ ◾ !elim_gluer)⁻¹, exact hrfl },
end
definition smash_flip_smash_functor (f : A →* C) (g : B →* D) : psquare
(smash_flip A B) (smash_flip C D) (f ∧→ g) (g ∧→ f) :=
begin
apply phomotopy.mk (smash_flip_smash_functor' f g), refine !idp_con ⬝ _ ⬝ !idp_con⁻¹,
refine !ap_ap011 ⬝ _, apply ap011_flip,
end
end smash