Spectral/component.hlean
2018-09-11 19:24:51 +02:00

100 lines
3.8 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Author: Floris van Doorn
import homotopy.connectedness .move_to_lib
open eq equiv pointed is_conn is_trunc sigma prod trunc function group nat fiber
namespace is_conn
open sigma.ops pointed trunc_index
/- this is equivalent to pfiber (A → ∥A∥₀) ≡ connect 0 A -/
definition component [constructor] (A : Type*) : Type* :=
pType.mk (Σ(a : A), merely (pt = a)) ⟨pt, tr idp⟩
lemma is_conn_component [instance] (A : Type*) : is_conn 0 (component A) :=
is_conn_zero_pointed'
begin intro x, induction x with a p, induction p with p, induction p, exact tidp end
definition component_incl [constructor] (A : Type*) : component A →* A :=
pmap.mk pr1 idp
definition is_embedding_component_incl [instance] (A : Type*) : is_embedding (component_incl A) :=
is_embedding_pr1 _
definition component_intro [constructor] {A B : Type*} (f : A →* B) (H : merely_constant f) :
A →* component B :=
begin
fapply pmap.mk,
{ intro a, refine ⟨f a, _⟩, exact tinverse (merely_constant_pmap H a) },
exact subtype_eq !respect_pt
end
definition component_functor [constructor] {A B : Type*} (f : A →* B) :
component A →* component B :=
component_intro (f ∘* component_incl A) !merely_constant_of_is_conn
-- definition component_elim [constructor] {A B : Type*} (f : A →* B) (H : merely_constant f) :
-- A →* component B :=
-- begin
-- fapply pmap.mk,
-- { intro a, refine ⟨f a, _⟩, exact tinverse (merely_constant_pmap H a) },
-- exact subtype_eq !respect_pt
-- end
definition loop_component (A : Type*) : Ω (component A) ≃* Ω A :=
loop_pequiv_loop_of_is_embedding (component_incl A)
lemma loopn_component (n : ) (A : Type*) : Ω[n+1] (component A) ≃* Ω[n+1] A :=
!loopn_succ_in ⬝e* loopn_pequiv_loopn n (loop_component A) ⬝e* !loopn_succ_in⁻¹ᵉ*
-- lemma fundamental_group_component (A : Type*) : π₁ (component A) ≃g π₁ A :=
-- isomorphism_of_equiv (trunc_equiv_trunc 0 (loop_component A)) _
lemma homotopy_group_component (n : ) (A : Type*) : πg[n+1] (component A) ≃g πg[n+1] A :=
homotopy_group_isomorphism_of_is_embedding (n+1) (component_incl A)
definition is_trunc_component [instance] (n : ℕ₋₂) (A : Type*) [is_trunc n A] :
is_trunc n (component A) :=
begin
apply @is_trunc_sigma, intro a, cases n with n,
{ refine is_contr_of_inhabited_prop _ _, exact tr !is_prop.elim },
{ exact is_trunc_succ_of_is_prop _ _ _ },
end
definition ptrunc_component' (n : ℕ₋₂) (A : Type*) :
ptrunc (n.+2) (component A) ≃* component (ptrunc (n.+2) A) :=
begin
fapply pequiv.MK',
{ exact ptrunc.elim (n.+2) (component_functor !ptr) },
{ intro x, cases x with x p, induction x with a,
refine tr ⟨a, _⟩,
note q := trunc_functor -1 !tr_eq_tr_equiv p,
exact trunc_trunc_equiv_left _ !minus_one_le_succ q },
{ exact sorry },
{ exact sorry }
end
definition ptrunc_component (n : ℕ₋₂) (A : Type*) :
ptrunc n (component A) ≃* component (ptrunc n A) :=
begin
cases n with n, exact sorry,
cases n with n, exact sorry,
exact ptrunc_component' n A
end
definition break_into_components (A : Type) : A ≃ Σ(x : trunc 0 A), Σ(a : A), ∥ tr a = x ∥ :=
calc
A ≃ Σ(a : A) (x : trunc 0 A), tr a = x :
by exact (@sigma_equiv_of_is_contr_right _ _ (λa, !is_contr_sigma_eq))⁻¹ᵉ
... ≃ Σ(x : trunc 0 A) (a : A), tr a = x :
by apply sigma_comm_equiv
... ≃ Σ(x : trunc 0 A), Σ(a : A), ∥ tr a = x ∥ :
by exact sigma_equiv_sigma_right (λx, sigma_equiv_sigma_right (λa, !trunc_equiv⁻¹ᵉ))
definition pfiber_pequiv_component_of_is_contr [constructor] {A B : Type*} (f : A →* B)
[is_contr B]
/- extra condition, something like trunc_functor 0 f is an embedding -/ : pfiber f ≃* component A :=
sorry
end is_conn