Spectral/algebra/direct_sum.hlean

135 lines
4.7 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Egbert Rijke
Constructions with groups
-/
import .quotient_group .free_commutative_group
open eq algebra is_trunc set_quotient relation sigma prod sum list trunc function equiv sigma.ops
namespace group
variables {G G' : AddGroup} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
{A B : AddAbGroup}
variables (X : Set) {l l' : list (X ⊎ X)}
section
parameters {I : Set} (Y : I → AddAbGroup)
variables {A' : AddAbGroup} {Y' : I → AddAbGroup}
definition dirsum_carrier : AddAbGroup := free_ab_group (trunctype.mk (Σi, Y i) _)
local abbreviation ι [constructor] := @free_ab_group_inclusion
inductive dirsum_rel : dirsum_carrier → Type :=
| rmk : Πi y₁ y₂, dirsum_rel (ι ⟨i, y₁⟩ + ι ⟨i, y₂⟩ + -(ι ⟨i, y₁ + y₂⟩))
definition dirsum : AddAbGroup := quotient_ab_group_gen dirsum_carrier (λg, ∥dirsum_rel g∥)
-- definition dirsum_carrier_incl [constructor] (i : I) : Y i →a dirsum_carrier :=
definition dirsum_incl [constructor] (i : I) : Y i →a dirsum :=
add_homomorphism.mk (λy, class_of (ι ⟨i, y⟩))
begin intro g h, symmetry, apply gqg_eq_of_rel, apply tr, apply dirsum_rel.rmk end
parameter {Y}
definition dirsum.rec {P : dirsum → Type} [H : Πg, is_prop (P g)]
(h₁ : Πi (y : Y i), P (dirsum_incl i y)) (h₂ : P 0) (h₃ : Πg h, P g → P h → P (g + h)) :
Πg, P g :=
begin
refine @set_quotient.rec_prop _ _ _ H _,
refine @set_quotient.rec_prop _ _ _ (λx, !H) _,
esimp, intro l, induction l with s l ih,
exact h₂,
induction s with v v,
induction v with i y,
exact h₃ _ _ (h₁ i y) ih,
induction v with i y,
refine h₃ (gqg_map _ _ (class_of [inr ⟨i, y⟩])) _ _ ih,
refine transport P _ (h₁ i (-y)),
refine _ ⬝ !one_mul,
refine _ ⬝ ap (λx, mul x _) (to_respect_zero (dirsum_incl i)),
apply gqg_eq_of_rel',
apply tr, esimp,
refine transport dirsum_rel _ (dirsum_rel.rmk i (-y) y),
rewrite [add.left_inv, add.assoc],
end
definition dirsum_homotopy {φ ψ : dirsum →a A'}
(h : Πi (y : Y i), φ (dirsum_incl i y) = ψ (dirsum_incl i y)) : φ ~ ψ :=
begin
refine dirsum.rec _ _ _,
exact h,
refine !to_respect_zero ⬝ !to_respect_zero⁻¹,
intro g₁ g₂ h₁ h₂, rewrite [+ to_respect_add', h₁, h₂]
end
definition dirsum_elim_resp_quotient (f : Πi, Y i →a A') (g : dirsum_carrier)
(r : ∥dirsum_rel g∥) : free_ab_group_elim (λv, f v.1 v.2) g = 1 :=
begin
induction r with r, induction r,
rewrite [to_respect_add, to_respect_neg], apply add_neg_eq_of_eq_add,
rewrite [zero_add, to_respect_add, ▸*, ↑foldl, +one_mul, to_respect_add']
end
definition dirsum_elim [constructor] (f : Πi, Y i →a A') : dirsum →a A' :=
gqg_elim _ (free_ab_group_elim (λv, f v.1 v.2)) (dirsum_elim_resp_quotient f)
definition dirsum_elim_compute (f : Πi, Y i →a A') (i : I) :
dirsum_elim f ∘g dirsum_incl i ~ f i :=
begin
intro g, apply zero_add
end
definition dirsum_elim_unique (f : Πi, Y i →a A') (k : dirsum →a A')
(H : Πi, k ∘g dirsum_incl i ~ f i) : k ~ dirsum_elim f :=
begin
apply gqg_elim_unique,
apply free_ab_group_elim_unique,
intro x, induction x with i y, exact H i y
end
end
variables {I J : Set} {Y Y' Y'' : I → AddAbGroup}
definition dirsum_functor [constructor] (f : Πi, Y i →a Y' i) : dirsum Y →a dirsum Y' :=
dirsum_elim (λi, dirsum_incl Y' i ∘g f i)
theorem dirsum_functor_compose (f' : Πi, Y' i →a Y'' i) (f : Πi, Y i →a Y' i) :
dirsum_functor f' ∘a dirsum_functor f ~ dirsum_functor (λi, f' i ∘a f i) :=
begin
apply dirsum_homotopy,
intro i y, reflexivity,
end
variable (Y)
definition dirsum_functor_gid : dirsum_functor (λi, aid (Y i)) ~ aid (dirsum Y) :=
begin
apply dirsum_homotopy,
intro i y, reflexivity,
end
variable {Y}
definition dirsum_functor_add (f f' : Πi, Y i →a Y' i) :
homomorphism_add (dirsum_functor f) (dirsum_functor f') ~
dirsum_functor (λi, homomorphism_add (f i) (f' i)) :=
begin
apply dirsum_homotopy,
intro i y, esimp, exact sorry
end
definition dirsum_functor_homotopy {f f' : Πi, Y i →a Y' i} (p : f ~2 f') :
dirsum_functor f ~ dirsum_functor f' :=
begin
apply dirsum_homotopy,
intro i y, exact sorry
end
definition dirsum_functor_left [constructor] (f : J → I) : dirsum (Y ∘ f) →a dirsum Y :=
dirsum_elim (λj, dirsum_incl Y (f j))
end group