119 lines
4.7 KiB
Text
119 lines
4.7 KiB
Text
import .LES_of_homotopy_groups homotopy.connectedness homotopy.homotopy_group homotopy.join
|
||
open eq is_trunc pointed is_conn is_equiv fiber equiv trunc nat chain_complex prod fin algebra
|
||
group trunc_index function join pushout
|
||
|
||
namespace nat
|
||
open sigma sum
|
||
definition eq_even_or_eq_odd (n : ℕ) : (Σk, 2 * k = n) ⊎ (Σk, 2 * k + 1 = n) :=
|
||
begin
|
||
induction n with n IH,
|
||
{ exact inl ⟨0, idp⟩},
|
||
{ induction IH with H H: induction H with k p: induction p,
|
||
{ exact inr ⟨k, idp⟩},
|
||
{ refine inl ⟨k+1, idp⟩}}
|
||
end
|
||
|
||
definition rec_on_even_odd {P : ℕ → Type} (n : ℕ) (H : Πk, P (2 * k)) (H2 : Πk, P (2 * k + 1))
|
||
: P n :=
|
||
begin
|
||
cases eq_even_or_eq_odd n with v v: induction v with k p: induction p,
|
||
{ exact H k},
|
||
{ exact H2 k}
|
||
end
|
||
|
||
end nat
|
||
open nat
|
||
|
||
namespace is_conn
|
||
|
||
local attribute comm_group.to_group [coercion]
|
||
local attribute is_equiv_tinverse [instance]
|
||
|
||
theorem is_equiv_π_of_is_connected.{u} {A B : pType.{u}} (n k : ℕ) (f : A →* B)
|
||
[H : is_conn_fun n f] (H2 : k ≤ n) : is_equiv (π→[k] f) :=
|
||
begin
|
||
induction k using rec_on_even_odd with k: cases k with k,
|
||
{ /- k = 0 -/
|
||
change (is_equiv (trunc_functor 0 f)), apply is_equiv_trunc_functor_of_is_conn_fun,
|
||
refine is_conn_fun_of_le f (zero_le_of_nat n)},
|
||
{ /- k > 0 even -/
|
||
have H2' : 2 * k + 1 ≤ n, from le.trans !self_le_succ H2,
|
||
exact
|
||
@is_equiv_of_trivial _
|
||
(LES_of_homotopy_groups3 f) _
|
||
(is_exact_LES_of_homotopy_groups3 f (k, 5))
|
||
(is_exact_LES_of_homotopy_groups3 f (succ k, 0))
|
||
(@is_contr_HG_fiber_of_is_connected A B (2 * k + 1) n f H H2')
|
||
(@is_contr_HG_fiber_of_is_connected A B (2 * succ k) n f H H2)
|
||
(@pgroup_of_group _ (comm_group_LES_of_homotopy_groups3 f k 0) idp)
|
||
(@pgroup_of_group _ (comm_group_LES_of_homotopy_groups3 f k 1) idp)
|
||
(homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun3 f (k, 0)))},
|
||
{ /- k = 1 -/
|
||
exact sorry},
|
||
{ /- k > 1 odd -/
|
||
have H2' : 2 * succ k ≤ n, from le.trans !self_le_succ H2,
|
||
have H3 : is_equiv (π→*[2*(succ k) + 1] f ∘* tinverse), from
|
||
@is_equiv_of_trivial _
|
||
(LES_of_homotopy_groups3 f) _
|
||
(is_exact_LES_of_homotopy_groups3 f (succ k, 2))
|
||
(is_exact_LES_of_homotopy_groups3 f (succ k, 3))
|
||
(@is_contr_HG_fiber_of_is_connected A B (2 * succ k) n f H H2')
|
||
(@is_contr_HG_fiber_of_is_connected A B (2 * succ k + 1) n f H H2)
|
||
(@pgroup_of_group _ (comm_group_LES_of_homotopy_groups3 f k 3) idp)
|
||
(@pgroup_of_group _ (comm_group_LES_of_homotopy_groups3 f k 4) idp)
|
||
(homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun3 f (k, 3))),
|
||
exact @(is_equiv.cancel_right tinverse) !is_equiv_tinverse
|
||
(pmap.to_fun (π→*[2*(succ k) + 1] f)) H3}
|
||
end
|
||
|
||
theorem is_surjective_π_of_is_connected.{u} {A B : pType.{u}} (n : ℕ) (f : A →* B)
|
||
[H : is_conn_fun n f] : is_surjective (π→[n + 1] f) :=
|
||
begin
|
||
induction n using rec_on_even_odd with n,
|
||
{ have H3 : is_surjective (π→*[2*n + 1] f ∘* tinverse), from
|
||
@is_surjective_of_trivial _
|
||
(LES_of_homotopy_groups3 f) _
|
||
(is_exact_LES_of_homotopy_groups3 f (n, 2))
|
||
(@is_contr_HG_fiber_of_is_connected A B (2 * n) (2 * n) f H !le.refl),
|
||
exact @(is_surjective_cancel_right (pmap.to_fun (π→*[2*n + 1] f)) tinverse) H3},
|
||
{ exact @is_surjective_of_trivial _
|
||
(LES_of_homotopy_groups3 f) _
|
||
(is_exact_LES_of_homotopy_groups3 f (k, 5))
|
||
(@is_contr_HG_fiber_of_is_connected A B (2 * k + 1) (2 * k + 1) f H !le.refl)}
|
||
end
|
||
|
||
/- joins -/
|
||
|
||
definition join_empty_right [constructor] (A : Type) : join A empty ≃ A :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro x, induction x with a o a o,
|
||
{ exact a },
|
||
{ exact empty.elim o },
|
||
{ exact empty.elim o } },
|
||
{ exact pushout.inl },
|
||
{ intro a, reflexivity},
|
||
{ intro x, induction x with a o a o,
|
||
{ reflexivity },
|
||
{ exact empty.elim o },
|
||
{ exact empty.elim o } }
|
||
end
|
||
|
||
definition natural_square2 {A B X : Type} {f : A → X} {g : B → X} (h : Πa b, f a = g b)
|
||
{a a' : A} {b b' : B} (p : a = a') (q : b = b')
|
||
: square (ap f p) (ap g q) (h a b) (h a' b') :=
|
||
by induction p; induction q; exact hrfl
|
||
|
||
section
|
||
open sphere sphere_index
|
||
|
||
definition add_plus_one_minus_one (n : ℕ₋₁) : n +1+ -1 = n := idp
|
||
definition add_plus_one_succ (n m : ℕ₋₁) : n +1+ (m.+1) = (n +1+ m).+1 := idp
|
||
definition minus_one_add_plus_one (n : ℕ₋₁) : -1 +1+ n = n :=
|
||
begin induction n with n IH, reflexivity, exact ap succ IH end
|
||
definition succ_add_plus_one (n m : ℕ₋₁) : (n.+1) +1+ m = (n +1+ m).+1 :=
|
||
begin induction m with m IH, reflexivity, exact ap succ IH end
|
||
|
||
end
|
||
|
||
end is_conn
|