369 lines
14 KiB
Text
369 lines
14 KiB
Text
-- Authors: Floris van Doorn
|
||
|
||
import homotopy.smash ..move_to_lib .pushout homotopy.red_susp
|
||
|
||
open bool pointed eq equiv is_equiv sum bool prod unit circle cofiber prod.ops wedge is_trunc
|
||
function red_susp
|
||
|
||
/- smash A (susp B) = susp (smash A B) <- this follows from associativity and smash with S¹ -/
|
||
|
||
/- To prove: Σ(X × Y) ≃ ΣX ∨ ΣY ∨ Σ(X ∧ Y) (notation means suspension, wedge, smash),
|
||
and both are equivalent to the reduced join -/
|
||
|
||
/- To prove: associative -/
|
||
|
||
/- smash A B ≃ pcofiber (pprod_of_pwedge A B) -/
|
||
|
||
variables {A B : Type*}
|
||
|
||
namespace smash
|
||
|
||
theorem elim_gluel' {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
|
||
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (a a' : A) :
|
||
ap (smash.elim Pmk Pl Pr Pgl Pgr) (gluel' a a') = Pgl a ⬝ (Pgl a')⁻¹ :=
|
||
!ap_con ⬝ !elim_gluel ◾ (!ap_inv ⬝ !elim_gluel⁻²)
|
||
|
||
theorem elim_gluer' {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
|
||
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (b b' : B) :
|
||
ap (smash.elim Pmk Pl Pr Pgl Pgr) (gluer' b b') = Pgr b ⬝ (Pgr b')⁻¹ :=
|
||
!ap_con ⬝ !elim_gluer ◾ (!ap_inv ⬝ !elim_gluer⁻²)
|
||
|
||
definition prod_of_wedge [unfold 3] (v : pwedge A B) : A × B :=
|
||
begin
|
||
induction v with a b ,
|
||
{ exact (a, pt) },
|
||
{ exact (pt, b) },
|
||
{ reflexivity }
|
||
end
|
||
|
||
definition wedge_of_sum [unfold 3] (v : A + B) : pwedge A B :=
|
||
begin
|
||
induction v with a b,
|
||
{ exact pushout.inl a },
|
||
{ exact pushout.inr b }
|
||
end
|
||
|
||
|
||
definition prod_of_wedge_of_sum [unfold 3] (v : A + B) : prod_of_wedge (wedge_of_sum v) = prod_of_sum v :=
|
||
begin
|
||
induction v with a b,
|
||
{ reflexivity },
|
||
{ reflexivity }
|
||
end
|
||
|
||
end smash open smash
|
||
|
||
namespace pushout
|
||
|
||
definition eq_inl_pushout_wedge_of_sum [unfold 3] (v : pwedge A B) :
|
||
inl pt = inl v :> pushout wedge_of_sum bool_of_sum :=
|
||
begin
|
||
induction v with a b,
|
||
{ exact glue (sum.inl pt) ⬝ (glue (sum.inl a))⁻¹, },
|
||
{ exact ap inl (glue ⋆) ⬝ glue (sum.inr pt) ⬝ (glue (sum.inr b))⁻¹, },
|
||
{ apply eq_pathover_constant_left,
|
||
refine !con.right_inv ⬝pv _ ⬝vp !con_inv_cancel_right⁻¹, exact square_of_eq idp }
|
||
end
|
||
|
||
variables (A B)
|
||
definition eq_inr_pushout_wedge_of_sum [unfold 3] (b : bool) :
|
||
inl pt = inr b :> pushout (@wedge_of_sum A B) bool_of_sum :=
|
||
begin
|
||
induction b,
|
||
{ exact glue (sum.inl pt) },
|
||
{ exact ap inl (glue ⋆) ⬝ glue (sum.inr pt) }
|
||
end
|
||
|
||
definition is_contr_pushout_wedge_of_sum : is_contr (pushout (@wedge_of_sum A B) bool_of_sum) :=
|
||
begin
|
||
apply is_contr.mk (pushout.inl pt),
|
||
intro x, induction x with v b w,
|
||
{ apply eq_inl_pushout_wedge_of_sum },
|
||
{ apply eq_inr_pushout_wedge_of_sum },
|
||
{ apply eq_pathover_constant_left_id_right,
|
||
induction w with a b,
|
||
{ apply whisker_rt, exact vrfl },
|
||
{ apply whisker_rt, exact vrfl }}
|
||
end
|
||
|
||
definition bool_of_sum_of_bool {A B : Type*} (b : bool) : bool_of_sum (sum_of_bool A B b) = b :=
|
||
by induction b: reflexivity
|
||
|
||
/- a different proof, using pushout lemmas, and the fact that the wedge is the pushout of
|
||
A + B <-- 2 --> 1 -/
|
||
definition pushout_wedge_of_sum_equiv_unit : pushout (@wedge_of_sum A B) bool_of_sum ≃ unit :=
|
||
begin
|
||
refine pushout_hcompose_equiv (sum_of_bool A B) (wedge_equiv_pushout_sum A B ⬝e !pushout.symm)
|
||
_ _ ⬝e _,
|
||
exact erfl,
|
||
reflexivity,
|
||
exact bool_of_sum_of_bool,
|
||
apply pushout_of_equiv_right
|
||
end
|
||
|
||
end pushout open pushout
|
||
|
||
namespace smash
|
||
|
||
variables (A B)
|
||
definition smash_equiv_cofiber : smash A B ≃ cofiber (@prod_of_wedge A B) :=
|
||
begin
|
||
unfold [smash, cofiber, smash'], symmetry,
|
||
refine !pushout.symm ⬝e _,
|
||
fapply pushout_vcompose_equiv wedge_of_sum,
|
||
{ symmetry, apply equiv_unit_of_is_contr, apply is_contr_pushout_wedge_of_sum },
|
||
{ intro x, reflexivity },
|
||
{ apply prod_of_wedge_of_sum }
|
||
end
|
||
|
||
definition pprod_of_pwedge [constructor] : pwedge A B →* A ×* B :=
|
||
begin
|
||
fconstructor,
|
||
{ exact prod_of_wedge },
|
||
{ reflexivity }
|
||
end
|
||
|
||
definition smash_pequiv_pcofiber [constructor] : smash A B ≃* pcofiber (pprod_of_pwedge A B) :=
|
||
begin
|
||
apply pequiv_of_equiv (smash_equiv_cofiber A B),
|
||
exact (cofiber.glue pt)⁻¹
|
||
end
|
||
|
||
variables {A B}
|
||
|
||
/- commutativity -/
|
||
|
||
definition smash_flip (x : smash A B) : smash B A :=
|
||
begin
|
||
induction x,
|
||
{ exact smash.mk b a },
|
||
{ exact auxr },
|
||
{ exact auxl },
|
||
{ exact gluer a },
|
||
{ exact gluel b }
|
||
end
|
||
|
||
definition smash_flip_smash_flip (x : smash A B) : smash_flip (smash_flip x) = x :=
|
||
begin
|
||
induction x,
|
||
{ reflexivity },
|
||
{ reflexivity },
|
||
{ reflexivity },
|
||
{ apply eq_pathover_id_right,
|
||
refine ap_compose' smash_flip _ _ ⬝ ap02 _ !elim_gluel ⬝ !elim_gluer ⬝ph _,
|
||
apply hrfl },
|
||
{ apply eq_pathover_id_right,
|
||
refine ap_compose' smash_flip _ _ ⬝ ap02 _ !elim_gluer ⬝ !elim_gluel ⬝ph _,
|
||
apply hrfl }
|
||
end
|
||
|
||
definition smash_comm : smash A B ≃* smash B A :=
|
||
begin
|
||
fapply pequiv_of_equiv,
|
||
{ apply equiv.MK, do 2 exact smash_flip_smash_flip },
|
||
{ reflexivity }
|
||
end
|
||
|
||
/- smash A S¹ = red_susp A -/
|
||
|
||
definition circle_elim_constant [unfold 5] {A : Type} {a : A} {p : a = a} (r : p = idp) (x : S¹) :
|
||
circle.elim a p x = a :=
|
||
begin
|
||
induction x,
|
||
{ reflexivity },
|
||
{ apply eq_pathover_constant_right, apply hdeg_square, exact !elim_loop ⬝ r }
|
||
end
|
||
|
||
|
||
definition red_susp_of_smash_pcircle [unfold 2] (x : smash A S¹*) : red_susp A :=
|
||
begin
|
||
induction x using smash.elim,
|
||
{ induction b, exact base, exact equator a },
|
||
{ exact base },
|
||
{ exact base },
|
||
{ reflexivity },
|
||
{ exact circle_elim_constant equator_pt b }
|
||
end
|
||
|
||
definition smash_pcircle_of_red_susp [unfold 2] (x : red_susp A) : smash A S¹* :=
|
||
begin
|
||
induction x,
|
||
{ exact pt },
|
||
{ exact gluel' pt a ⬝ ap (smash.mk a) loop ⬝ gluel' a pt },
|
||
{ refine !con.right_inv ◾ _ ◾ !con.right_inv,
|
||
exact ap_is_constant gluer loop ⬝ !con.right_inv }
|
||
end
|
||
|
||
definition smash_pcircle_of_psusp_of_smash_pcircle_pt [unfold 3] (a : A) (x : S¹*) :
|
||
smash_pcircle_of_red_susp (red_susp_of_smash_pcircle (smash.mk a x)) = smash.mk a x :=
|
||
begin
|
||
induction x,
|
||
{ exact gluel' pt a },
|
||
{ exact abstract begin apply eq_pathover,
|
||
refine ap_compose smash_pcircle_of_red_susp _ _ ⬝ph _,
|
||
refine ap02 _ (elim_loop pt (equator a)) ⬝ !elim_equator ⬝ph _,
|
||
-- make everything below this a lemma defined by path induction?
|
||
refine !con_idp⁻¹ ⬝pv _, refine !con.assoc⁻¹ ⬝ph _, apply whisker_bl, apply whisker_lb,
|
||
apply whisker_tl, apply hrfl end end }
|
||
end
|
||
|
||
definition concat2o [unfold 10] {A B : Type} {f g h : A → B} {q : f ~ g} {r : g ~ h} {a a' : A}
|
||
{p : a = a'} (s : q a =[p] q a') (t : r a =[p] r a') : q a ⬝ r a =[p] q a' ⬝ r a' :=
|
||
by induction p; exact idpo
|
||
|
||
definition apd_con_fn [unfold 10] {A B : Type} {f g h : A → B} {q : f ~ g} {r : g ~ h} {a a' : A}
|
||
(p : a = a') : apd (λa, q a ⬝ r a) p = concat2o (apd q p) (apd r p) :=
|
||
by induction p; reflexivity
|
||
|
||
-- definition apd_con_fn_constant [unfold 10] {A B : Type} {f : A → B} {b b' : B} {q : Πa, f a = b}
|
||
-- {r : b = b'} {a a' : A} (p : a = a') :
|
||
-- apd (λa, q a ⬝ r) p = concat2o (apd q p) (pathover_of_eq _ idp) :=
|
||
-- by induction p; reflexivity
|
||
|
||
theorem apd_constant' {A A' : Type} {B : A' → Type} {a₁ a₂ : A} {a' : A'} (b : B a')
|
||
(p : a₁ = a₂) : apd (λx, b) p = pathover_of_eq p idp :=
|
||
by induction p; reflexivity
|
||
|
||
definition smash_pcircle_pequiv_red [constructor] (A : Type*) : smash A S¹* ≃* red_susp A :=
|
||
begin
|
||
fapply pequiv_of_equiv,
|
||
{ fapply equiv.MK,
|
||
{ exact red_susp_of_smash_pcircle },
|
||
{ exact smash_pcircle_of_red_susp },
|
||
{ exact abstract begin intro x, induction x,
|
||
{ reflexivity },
|
||
{ apply eq_pathover, apply hdeg_square,
|
||
refine ap_compose red_susp_of_smash_pcircle _ _ ⬝ ap02 _ !elim_equator ⬝ _ ⬝ !ap_id⁻¹,
|
||
refine !ap_con ⬝ (!ap_con ⬝ !elim_gluel' ◾ !ap_compose'⁻¹) ◾ !elim_gluel' ⬝ _,
|
||
esimp, exact !idp_con ⬝ !elim_loop },
|
||
{ exact sorry } end end },
|
||
{ intro x, induction x,
|
||
{ exact smash_pcircle_of_psusp_of_smash_pcircle_pt a b },
|
||
{ exact gluel pt },
|
||
{ exact gluer pt },
|
||
{ apply eq_pathover_id_right,
|
||
refine ap_compose smash_pcircle_of_red_susp _ _ ⬝ph _,
|
||
unfold [red_susp_of_smash_pcircle],
|
||
refine ap02 _ !elim_gluel ⬝ph _,
|
||
esimp, apply whisker_rt, exact vrfl },
|
||
{ apply eq_pathover_id_right,
|
||
refine ap_compose smash_pcircle_of_red_susp _ _ ⬝ph _,
|
||
unfold [red_susp_of_smash_pcircle],
|
||
-- not sure why so many implicit arguments are needed here...
|
||
refine ap02 _ (@smash.elim_gluer A S¹* _ (λa, circle.elim red_susp.base (equator a)) red_susp.base red_susp.base (λa, refl red_susp.base) (circle_elim_constant equator_pt) b) ⬝ph _,
|
||
apply square_of_eq, induction b,
|
||
{ exact whisker_right _ !con.right_inv },
|
||
{ apply eq_pathover_dep, refine !apd_con_fn ⬝pho _ ⬝hop !apd_con_fn⁻¹,
|
||
refine ap (λx, concat2o x _) !rec_loop ⬝pho _ ⬝hop (ap011 concat2o (apd_compose1 (λa b, ap smash_pcircle_of_red_susp b) (circle_elim_constant equator_pt) loop) !apd_constant')⁻¹,
|
||
}
|
||
|
||
}}},
|
||
{ reflexivity }
|
||
end
|
||
print apd_constant
|
||
print apd_compose2
|
||
print apd_compose1
|
||
print apd_con
|
||
print eq_pathover_dep
|
||
--set_option pp.all true
|
||
print smash.elim_gluer
|
||
/- smash A S¹ = susp A -/
|
||
open susp
|
||
|
||
|
||
definition psusp_of_smash_pcircle [unfold 2] (x : smash A S¹*) : psusp A :=
|
||
begin
|
||
induction x using smash.elim,
|
||
{ induction b, exact pt, exact merid a ⬝ (merid pt)⁻¹ },
|
||
{ exact pt },
|
||
{ exact pt },
|
||
{ reflexivity },
|
||
{ induction b, reflexivity, apply eq_pathover_constant_right, apply hdeg_square,
|
||
exact !elim_loop ⬝ !con.right_inv }
|
||
end
|
||
|
||
definition smash_pcircle_of_psusp [unfold 2] (x : psusp A) : smash A S¹* :=
|
||
begin
|
||
induction x,
|
||
{ exact pt },
|
||
{ exact pt },
|
||
{ exact gluel' pt a ⬝ (ap (smash.mk a) loop ⬝ gluel' a pt) },
|
||
end
|
||
|
||
-- the definitions below compile, but take a long time to do so and have sorry's in them
|
||
definition smash_pcircle_of_psusp_of_smash_pcircle_pt [unfold 3] (a : A) (x : S¹*) :
|
||
smash_pcircle_of_psusp (psusp_of_smash_pcircle (smash.mk a x)) = smash.mk a x :=
|
||
begin
|
||
induction x,
|
||
{ exact gluel' pt a },
|
||
{ exact abstract begin apply eq_pathover,
|
||
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
|
||
refine ap02 _ (elim_loop north (merid a ⬝ (merid pt)⁻¹)) ⬝ph _,
|
||
refine !ap_con ⬝ (!elim_merid ◾ (!ap_inv ⬝ !elim_merid⁻²)) ⬝ph _,
|
||
-- make everything below this a lemma defined by path induction?
|
||
refine !con_idp⁻¹ ⬝pv _, apply whisker_tl, refine !con.assoc⁻¹ ⬝ph _,
|
||
apply whisker_bl, apply whisker_lb,
|
||
refine !con_idp⁻¹ ⬝pv _, apply whisker_tl, apply hrfl
|
||
refine !con_idp⁻¹ ⬝pv _, apply whisker_tl,
|
||
refine !con.assoc⁻¹ ⬝ph _, apply whisker_bl, apply whisker_lb, apply hrfl
|
||
apply square_of_eq, rewrite [+con.assoc], apply whisker_left, apply whisker_left,
|
||
symmetry, apply con_eq_of_eq_inv_con, esimp, apply con_eq_of_eq_con_inv,
|
||
refine _⁻² ⬝ !con_inv, refine _ ⬝ !con.assoc,
|
||
refine _ ⬝ whisker_right _ !inv_con_cancel_right⁻¹, refine _ ⬝ !con.right_inv⁻¹,
|
||
refine !con.right_inv ◾ _, refine _ ◾ !con.right_inv,
|
||
refine !ap_mk_right ⬝ !con.right_inv end end }
|
||
end
|
||
|
||
-- definition smash_pcircle_of_psusp_of_smash_pcircle_gluer_base (b : S¹*)
|
||
-- : square (smash_pcircle_of_psusp_of_smash_pcircle_pt (Point A) b)
|
||
-- (gluer pt)
|
||
-- (ap smash_pcircle_of_psusp (ap (λ a, psusp_of_smash_pcircle a) (gluer b)))
|
||
-- (gluer b) :=
|
||
-- begin
|
||
-- refine ap02 _ !elim_gluer ⬝ph _,
|
||
-- induction b,
|
||
-- { apply square_of_eq, exact whisker_right _ !con.right_inv },
|
||
-- { apply square_pathover', exact sorry }
|
||
-- end
|
||
|
||
exit
|
||
definition smash_pcircle_pequiv [constructor] (A : Type*) : smash A S¹* ≃* psusp A :=
|
||
begin
|
||
fapply pequiv_of_equiv,
|
||
{ fapply equiv.MK,
|
||
{ exact psusp_of_smash_pcircle },
|
||
{ exact smash_pcircle_of_psusp },
|
||
{ exact abstract begin intro x, induction x,
|
||
{ reflexivity },
|
||
{ exact merid pt },
|
||
{ apply eq_pathover_id_right,
|
||
refine ap_compose psusp_of_smash_pcircle _ _ ⬝ph _,
|
||
refine ap02 _ !elim_merid ⬝ph _,
|
||
rewrite [↑gluel', +ap_con, +ap_inv, -ap_compose'],
|
||
refine (_ ◾ _⁻² ◾ _ ◾ (_ ◾ _⁻²)) ⬝ph _,
|
||
rotate 5, do 2 (unfold [psusp_of_smash_pcircle]; apply elim_gluel),
|
||
esimp, apply elim_loop, do 2 (unfold [psusp_of_smash_pcircle]; apply elim_gluel),
|
||
refine idp_con (merid a ⬝ (merid (Point A))⁻¹) ⬝ph _,
|
||
apply square_of_eq, refine !idp_con ⬝ _⁻¹, apply inv_con_cancel_right } end end },
|
||
{ intro x, induction x using smash.rec,
|
||
{ exact smash_pcircle_of_psusp_of_smash_pcircle_pt a b },
|
||
{ exact gluel pt },
|
||
{ exact gluer pt },
|
||
{ apply eq_pathover_id_right,
|
||
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
|
||
unfold [psusp_of_smash_pcircle],
|
||
refine ap02 _ !elim_gluel ⬝ph _,
|
||
esimp, apply whisker_rt, exact vrfl },
|
||
{ apply eq_pathover_id_right,
|
||
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
|
||
unfold [psusp_of_smash_pcircle],
|
||
refine ap02 _ !elim_gluer ⬝ph _,
|
||
induction b,
|
||
{ apply square_of_eq, exact whisker_right _ !con.right_inv },
|
||
{ exact sorry}
|
||
}}},
|
||
{ reflexivity }
|
||
end
|
||
|
||
end smash
|
||
-- (X × A) → Y ≃ X → A → Y
|